DOI QR코드

DOI QR Code

Study on effect on CO2 flux of wetland soil by feces of Korean water deer(Hydropotes inermis)

고라니(Hydropotes inermis)의 분변이 습지 토양의 CO2 flux에 미치는 영향

  • Park, Hyomin (Dept. of Environmental Sciences and Engineering, Ewha Womans University) ;
  • Chun, Seunghoon (Dept. of Landscape Architecture, Gachon University) ;
  • Lee, Sangdon (Dept. of Environmental Sciences and Engineering, Ewha Womans University)
  • 박효민 (이화여자대학교 환경공학과) ;
  • 전승훈 (가천대학교 조경학과) ;
  • 이상돈 (이화여자대학교 환경공학과)
  • Received : 2015.06.08
  • Accepted : 2015.08.05
  • Published : 2015.08.31

Abstract

The total global emission of $CO_2$ from soils is recognized as one of the largest fluxes in the global carbon cycle. Especially it is necessary to quantify the amount of $CO_2$ emitted by the organic material decomposition processes of microorganisms in the soil, because it becomes one of a factor for determining the carbon stocks in the soil. This study was conducted to estimate the impact of the Korean water deer(Hydropotes inermis)' feces to the soil organic matter. Also, effects of Korean water deer' feces on $CO_2$ emissions of soil and land use pattern dependent $CO_2$ flux quantification are studied. The organic materials in the Korean water deer' feces significantly changed organic matter content of soil and influenced the activity of soil microorganisms, both changing of respiration of the soil and physical chemical components in soil. In particular, C/N ratio and the $CO_2$ flux of soil of four regions (Rice paddy, Fallow ground, Salix koreensis community, Phragmites australis community) showed a statistically highly significant correlation (P<0.01) with the presence or absence of feces. $CO_2$ flux of soil affected by the feces was 2-20 times higher than the soil unaffected by the feces. This study has great significance to quantify the extent of the material circulation and its impact to the terrestrial ecosystem and soil zone throughout Korean water deer' feces. Feces of wildlife can affect soil and soil material circulation.

토양으로부터 방출되는 $CO_2$의 양은 전 지구적 지구 탄소 순환에서 가장 큰 방출 중 하나로 알려져 있다. 특히 토양 내 미생물의 유기물질 분해 과정에 의해 방출되는 이산화탄소의 양은 토양의 탄소 저장량을 장기적으로 결정하는 요인이 되므로 그 양을 정량화 하는 것이 필요하다. 본 연구는 토양에서 고라니의 분변이 $CO_2$ 배출에 미치는 영향을 파악하기 위해 수행하였다. 그리고 고라니의 분변이 토양의 $CO_2$ 배출에 주는 영향과 토지의 이용에 따라 변화하는 $CO_2$ flux를 정량화 하였다. 그 결과 고라니 분변 내 많은 유기물질은 토양 미생물의 활성화에 영향을 주고 그로 인해 토양의 호흡 및 토양 내 물리 화학적인 변화가 발생되어 토양의 유기물 함량이 서로 다르게 나타남을 확인할 수 있었다. 특히 4개 지역의 토양(경작지, 휴경지, 버드나무 군락, 갈대습지)의 C/N ratio와 $CO_2$ flux는 분변의 유무와 통계적으로 매우 유의미한 상관 관계를 나타냈으며(P<0.01), 분변의 영향을 받은 토양의 $CO_2$ flux는 분변의 영향을 받지 않은 토양보다 2-20배 더 높은 것으로 나타났다. 이 연구는 고라니의 분변이 토양에 주는 영향과 야생동물 분변을 이용한 토양 물질 순환 연구를 통해 육상 생태계 및 토양권의 물질 순환과 그 영향의 정도를 정량화 하였다는 점에서 큰 의의가 있는 연구이다.

Keywords

References

  1. Batzli, GO and Cole, FR (1979). Nutritional ecology of microtine rodents : digestibility of forage. J. of Mammal. 60, pp. 740-750 https://doi.org/10.2307/1380189
  2. Berner, RA, Lasaga AC and Garrels RM (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am. J. Sci. 283(7), pp. 641-683 https://doi.org/10.2475/ajs.283.7.641
  3. Choi, SM (2010). Soil science. Yeamoonsa. [Korean Literature]
  4. Cooke, A and Farrell, L (1998). Chinese Water Deer. The mammal society, London and the British Deer society. Fordingbridge. pp. 1-32
  5. Crutzen, PJ (1981). Atmospheric chemical processes of the oxides of nitrogen, including $N_2O$, C.C. Delwiche (Ed.), Denitrification, Nitrification, and Atmospheric Nitrous Oxide. Wiley, New York. pp. 17-44
  6. Davidson, EA and Janssens, IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 440(7081), pp. 165-73 https://doi.org/10.1038/nature04514
  7. Doran, JW, Mielke LN and Power JF (1990). Microbial activity as regulated by soil water-filled pore space Symposium on ecology of soil microorganisms in the microhabitat environment, Transactions of the 14th International Congress of Soil Science, Vol. III, Int. Soc. Soil Sci, Kyoto, Japan. pp. 94-99
  8. Eswaran, H, Van Den Berg, E, and Reich, P (1993). Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57, pp.192-194 https://doi.org/10.2136/sssaj1993.03615995005700010034x
  9. Han river Basin Environmental Office (2009). Monitoring report in Han river estuary wetland conservation area [Korean Literature]
  10. Hammel, JE, Papendick, RI and Campbell, GS (1981). Fallow tillage effects on evaporation and seed zone water content in a dry summer climate. Soil Sci. Am. J. 45(6), pp. 1016-1022 https://doi.org/10.2136/sssaj1981.03615995004500060003x
  11. Hilton TC (2000). IUCN Red list of threatened species. International Union for the Conservation of Nature, Gland, Switzerland
  12. IPCC (2000). Summary for Policy Markers : Land Use, Land Use Change and Forestry. A Special Report of the Intergovernmental Panel on Climate Change. IPCC Secretariat, WMO, 7bis, Avenue de la Paix, C.P. no. 2300, 1211 Geneva 2, Switzerland.
  13. IPCC (2013). The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.
  14. Janzen, HH (2004). Carbon cycling in earth systems - a soil science perspective, Agriculture and Environment. 104(3), pp. 399-417
  15. Jay, DM, George, OB, Everett, KR, John, CS (1980). Some effect of mammalian herbivores and fertilization on tundra soils and vegetation. Arctic and Alpine Research. 12(4), pp. 565-578 https://doi.org/10.2307/1550501
  16. Kim, JG, Lee, KB, Lee, SB, Lee, DB, Kim, SJ (1999). The effect of long - term application of different organic material sources on chemical properties of upland soil. Korean J. Soil Sci. Fert. 32(3), pp. 239-253 [Korean Literature]
  17. Kim, WM, Kim, JY, Seo, CW, Kim, UK, Kim, JH, Shin, JH, Jung, HM, Bang KJ and Joe, YG (2009). Study on the optimal management for sustainable use of Korean water deer population, National Institute of Environmental Research [Korean Literature]
  18. Lee, EH, Lim, JH and Lee, JS (2010). A review on soil respiration measurement and its application in Korea. J. of Agr. and Forest Meteorol. 12(4), pp. 264-276 [Korean Literature]
  19. Lee, MW (2006). Soil biology. Dongguk Univ. Press. [Korean Literature]
  20. Linn, DM and Doran, JW (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48, pp. 1267-1272 https://doi.org/10.2136/sssaj1984.03615995004800060013x
  21. Ministry of environment. KDI Center of Economic Information (2008). Expansion in the crops of protecting wildlife damage during harvest. http://epic.kdi.re.kr/epic/epic_view.jsp?num=95989&menu=1[Korean Literature]
  22. National Academy of Agricultural Science (2010). Methods of soil chemical analysis. [Korean Literature]
  23. Oh, NH, Kim, HS and Richter DD (2005). What regulates soil $CO_2$ concentrations? - A modeling approach to $CO_2$ diffusion in deep soil profiles. Environmental Engineering Science 22(1), pp. 38-45 https://doi.org/10.1089/ees.2005.22.38
  24. Park, HM and Lee, SD (2013). Habitat use pattern of Korean waterdeer based on the land coverage map. J. Wetl. Res. 15(4), pp.567-572. [Korean Literature] https://doi.org/10.17663/JWR.2013.15.4.567
  25. Park, HM and Lee, SD (2014). Factor of plant growth in relation to feces of Korean waterdeer and land use patterns. J. Wetl. Res. 16(4), pp.443-452 [Korean Literature] https://doi.org/10.17663/JWR.2014.16.4.443
  26. Raich, JW and Schlesinger, WH (1994). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus, 44B, pp. 81-99
  27. Raich, JW and Potter, CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biochemical Cycles. 15(1), pp.23-26
  28. Rao, DN and Pathak, H (1996). Ameliorative influence of organic matter on biological activity of salt-affected soils. Arid Soil Research and Rehabilitation. 10(4), pp. 311-319 https://doi.org/10.1080/15324989609381446
  29. Robertson, GP, Bledsoe, CS, Coleman, DC, Sollins, P (1999). Standard soil methods for long-term ecological research. Oxford Univ. Press, New York
  30. Schimel, DS, Braswell, BH, McKeown, R, Ojima, DS, Parton, WJ and Pulliam, W (1996). Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochemical Cycles. 10(4), pp. 677-692 https://doi.org/10.1029/96GB01524
  31. Schimel, J Clein, J (1996). Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology and Biochemistry. 28, pp. 1061-1066 https://doi.org/10.1016/0038-0717(96)00083-1
  32. Schlesinger, WH (1977). Carbon balance in terrestrial detritus. Ann. Rev. Ecol. Systematics. 8, pp.51-81 https://doi.org/10.1146/annurev.es.08.110177.000411
  33. Schlesinger, WH (1997). Biogeochemistry: An Analysis of Global Change, 2nd edn. Academic Press, San Diego
  34. Schlesinger, WH and Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry. 48(7), pp. 7-20 https://doi.org/10.1023/A:1006247623877
  35. Sitaula, BK, Bakken LR and Abrahamsen G (1995). N-fertilization and soil acidification effects on $N_2O$ and $CO_2$ emission from temperate pine forest soil. Soil Biology and Biochemistry. 27(11), pp. 1401-1408 https://doi.org/10.1016/0038-0717(95)00078-S
  36. Vitousek, PM, and Howarth, RW (1991). Nitrogen limitation on land and in the sea: how can it occur?. Biogeochemistry. 13(2), pp. 87-115 https://doi.org/10.1007/BF00002772
  37. Wang, S (1998). China red data book of endangered animals (mammal volume). Science Press, Beijing.
  38. Won, HY, Kwon, JS, Shin, YK, Kim, SH, Suh, JS and Choi, WY (2004). Effects of composted pig manure application on enzyme activities and microbial biomass of soil under Chinese Cabbage cultivation. J. Soil Sci. Fert. 37(2), pp. 109-115 [Korean Literature]
  39. Yoon, HB (2008). Nitrogen mineralization and soil carbon accumulation by livestock manure composts in upland soil, Ph. D. Dissertation, Kangwon University, Chuncheon, Korea. [Korean Literature]