The feasibility evaluation of Respiratory Gated radiation therapy simulation according to the Respiratory Training with lung cancer

폐암 환자의 호흡훈련에 의한 호흡동조 방사선치료계획의 유용성 평가

  • Hong, mi ran (Samsung Medical Center, Department of Radiation Oncology) ;
  • Kim, cheol jong (Samsung Medical Center, Department of Radiation Oncology) ;
  • Park, soo yeon (Samsung Medical Center, Department of Radiation Oncology) ;
  • Choi, jae won (Samsung Medical Center, Department of Radiation Oncology) ;
  • Pyo, hong ryeol (Samsung Medical Center, Department of Radiation Oncology)
  • 홍미란 (삼성서울병원방사선종양학과, 성균관대학교의과대학 삼성서울병원방사선종양학과) ;
  • 김철종 (삼성서울병원방사선종양학과, 성균관대학교의과대학 삼성서울병원방사선종양학과) ;
  • 박수연 (삼성서울병원방사선종양학과, 성균관대학교의과대학 삼성서울병원방사선종양학과) ;
  • 최재원 (삼성서울병원방사선종양학과, 성균관대학교의과대학 삼성서울병원방사선종양학과) ;
  • 표홍렬 (삼성서울병원방사선종양학과, 성균관대학교의과대학 삼성서울병원방사선종양학과)
  • Received : 2016.11.17
  • Accepted : 2016.12.10
  • Published : 2016.12.30

Abstract

Purpose : To evaluate the usefulness of the breathing exercise,we analyzed the change in the RPM signal and the diaphragm imagebefore 4D respiratory gated radiation therapy planning of lung cancer patients. Materials and Methods : The breathing training was enforced on 11 patients getting the 4D respiratory gated radiation therapy from April, 2016 until August. At the same time, RPM signal and diaphragm image was obtained respiration training total three steps in step 1 signal acquisition of free-breathing state, 2 steps respiratory signal acquisition through the guide of the respiratory signal, 3 steps, won the regular respiration signal to the description and repeat training. And then, acquired the minimum value, maximum value, average value, and a standard deviation of the inspiration and expiration in RPM signal and diaphragm image in each steps. Were normalized by the value of the step 1, to convert the 2,3 steps to the other distribution ratio (%), by evaluating the change in the interior of the respiratory motion of the patient, it was evaluated breathing exercise usefulness of each patient. Results : The mean value and the standard deviation of each step were obtained with the procedure 1 of the RPM signal and the diaphragm amplitude as a 100% reference. In the RPM signal, the amplitudes and standard deviations of four patients (36.4%, eleven) decreased by 18.1%, 27.6% on average in 3 steps, and 2 patients (18.2%, 11 people) had standard deviation, It decreased by an average of 36.5%. Meanwhile, the other four patients (36.4%, eleven) decreased by an average of only amplitude 13.1%. In Step 3, the amplitude of the diaphragm image decreased by 30% on average of 9 patients (81.8%, 11 people), and the average of 2 patients (18.2%, 11 people) increased by 7.3%. However, the amplitudes of RPM signals and diaphragm image in 3steps were reduced by 52.6% and 42.1% on average from all patients, respectively, compared to the 2 steps. Relationship between RPM signal and diaphragm image amplitude difference was consistent with patterns of movement 1, 2 and 3steps, respectively, except for No. 2 No. 10 patients. Conclusion : It is possible to induce an optimized respiratory cycle when respiratory training is done. By conducting respiratory training before treatment, it was possible to expect the effect of predicting the movement of the lung which could control the patient's respiration. Ultimately, it can be said that breathing exercises are useful because it is possible to minimize the systematic error of radiotherapy, expect more accurate treatment. In this study, it is limited to research analyzed based on data on respiratory training before treatment, and it will be necessary to verify with the actual CT plan and the data acquired during treatment in the future.

목 적 : 폐암환자의 호흡동조 방사선 치료 계획 시 호흡 훈련 전후 RPM 신호와 횡격막 위치 변화를 분석하여 호흡 훈련의 유용성을 평가하고자 한다. 대상 및 방법 : 2016년 4월부터 8월까지 호흡 동조 방사선 치료를 받는 환자 11명을 대상으로 호흡 훈련을 시행하였고 동시에 RPM 신호 및 횡격막 영상을 획득하였다. 호흡 훈련은 총 3단계로 1단계 자유 호흡 상태의 신호 획득, 2단계 호흡 신호 가이드를 통한 1차 호흡 신호 획득, 3단계 설명과 반복 훈련으로 규칙성과 안정을 유도한 최종 호흡 신호를 획득 하였다. 각 단계의 흡기와 호기시 RPM 신호와 투시 영상의 횡격막 위치의 평균값, 표준편차, 최대값, 최소값을 구하고, 이를 1단계 값으로 표준화 하여 2, 3단계를 상대분포 백분율(%)로 변환하여 환자의 호흡 변화와 내부 움직임을 분석 함으로써 각 환자의 호흡훈련 유용성을 평가 하였다. 결 과 : RPM 신호와 횡격막 진폭을 측정한 뒤, 1단계를 100%으로 표준화하여 각 단계의 평균값과 표준편차의 오차 평균을 구하였다. 그 결과, 3단계 최종호흡 획득 시 진폭의 상대평균 및 표준편차 모두 감소가36.4%, 표준편차만 감소가 18.2%, 진폭만 감소가 36.4%로 나타났으며, 횡격막 영상의 위치 측정 시 3단계에서 전체 81.8%의 환자에게서 상대평균 진폭 값이 30% 감소함을 보였다. 그러나 모든 환자들에게서 2단계 대비 3단계의 RPM 신호와 횡격막 진폭이 각각 평균 52.6%, 42.1% 감소함을 보였다. 또한, RPM 신호와 횡격막 영상 진폭 차이의 연관성은 2번 10번 환자를 제외하고 각각 1, 2, 3단계 움직임의 패턴이 상관관계를 보였다. 결 론 : 호흡 동조 방사선치료에서 호흡 훈련을 시행하였을 때 최적화된 호흡 주기를 유도할 수 있었으며, 모의 호흡 훈련을 치료 전 시행함으로써 불규칙적인 호흡에 의한 환자의 호흡을 제어해 폐의 움직임을 예측 가능 하게 해주는 효과를 기대할 수 있었다. 궁극적으로는 방사선 치료의 체계적 오류를 최소화해 보다 정확한 치료를 기대할 수 있어 호흡 훈련이 유용하다고 할 수 있겠다.그러나 본 연구는 치료 전 호흡 훈련을 시행한 자료를 바탕으로 분석한 연구로 제한되어 있으며 추후 실제 CT 계획과 치료 시 획득한 자료를 가지고 검증하는 것도 필요할 것으로 사료된다.

Keywords

References

  1. WillettCG, LinggoodRM, StracherMA, et al.The effect of respiratory cycle on mediastinal and lung dimensions in Hodgkin'sdisease. Cancer 1987;60;1232-1237. https://doi.org/10.1002/1097-0142(19870915)60:6<1232::AID-CNCR2820600612>3.0.CO;2-F
  2. Mageras GS, Pevsner A, YorkeED, et al. Measurement of lung tumor motion using respiration-correlated CT.Int J Radiat Oncol Biol Phys 2004;60:933-941. https://doi.org/10.1016/j.ijrobp.2004.06.021
  3. American Association of Physicists in Medicine(AAPM). The management of respiratory motion in radiation oncology, AAPM Task Group76
  4. S. S. Vedam, V. R. Kini, and P. J. Keall, "Quantifying the predictability of diaphragmmotion during respiration with a noninvasiveexternal marker,"Med Phys, Vol.30, No.4,pp.505-513, 2003. https://doi.org/10.1118/1.1558675
  5. G. S. Mageras, A. Pevsner, and E. D. Yorke, "Measurement of lung tumor motion usingrespirationcorrelated CT,"Int J Radiat OncolBiol Phys, Vol.60, No.3, pp.933-941, 2004 https://doi.org/10.1016/j.ijrobp.2004.06.021
  6. Baltr JM, Ten Haken RK, Lawrence TS, et al. .(1996). Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys, 36, p. 167-174
  7. de Boer HC, van Sornsen de Koste JR, Senan S, et al.(2011). Analysis and reduction of 3D systematic and random setup erros during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Bilo Phys, 49, p. 857-868.
  8. Balter JM, Ten Hanken RK, Lawrence TS, Lam KL,and Robertson JM. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. IntJRadiatOncol,Biol,Phys1996;36:167-174.
  9. Shimizu S, ShiratoH, OguraS, et al. Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol, Biol, Phys 2001;51:304-310
  10. Seppenwoolde Y, Shirato H, Kitamura K, et al. (2002). Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 53, p. 822-834 https://doi.org/10.1016/S0360-3016(02)02803-1
  11. Ramsey CR,Scaperoth D,Arwood D,and Oliver AL.Clinical efficacy ofrespiratorygatedconformal radiation therapy. MedDosim 24;115-119:1999.
  12. Kubo HD and HilBC.Respiration gated radiotherapy treatment:a technicalstudy.PhysMedBiol1996;41:83-91
  13. Shah AP, Kupelian PA, Waghorn BJ, et al. (2013). Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System. Int J Radiat Oncol Bio Phys, 86, p. 477-483. https://doi.org/10.1016/j.ijrobp.2012.12.030
  14. E. H. Shin, Y. Y. Han, H. C. Park et al., Development of Movement Analysis Program and its Feasibility Test inStreotactic Body Radiation Threrapy. Kor. Soc. of Med. Phys. 22 (3), 107 (2011).
  15. Kini VR, Vedam SS, Keall PJ, et al: Patient training in respiratory-gated radiotherapy. Med Dosim 28:7-11 (2003) https://doi.org/10.1016/S0958-3947(02)00136-X
  16. Masaoka Y, Homma I. The effect of anticipatory anxiety on breathing and metabolism in humans. Respir Physiol 2001; 128:171-177. https://doi.org/10.1016/S0034-5687(01)00278-X