DOI QR코드

DOI QR Code

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chauhan, Puneet S. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Woo, Sung-Man (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Hong, Bo-Hee (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Kee-Woong (Bio-Evaluation Center, KRIBB) ;
  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2011.01.20
  • Accepted : 2011.02.22
  • Published : 2011.02.28

Abstract

The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Keywords

References

  1. Adhikari, S. and S. Ayyappan. 2004. Behavioral role of zinc on primary productivity, plankton and growth of a freshwater teleost, Labeo rohita (Hamilton). Aquaculture 231:327-336. https://doi.org/10.1016/j.aquaculture.2003.10.038
  2. Alef, K., P. Nannipieri, and C. Trasar Cepeda. 1995. Phosphatase activity. p. 335-344. In K. Alef and P. Nannipieri (ed.) Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London.
  3. Alloway, B.J. 1995. Heavy metals in soils. Blackie Academic and Professional, New York.
  4. Almas, A.R., L.R. Bakken, and J. Mulder. 2004. Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol. Biochem. 36:805-813. https://doi.org/10.1016/j.soilbio.2004.01.010
  5. Anderson, J.P.E. 1982. Soil respiration. In A.L. Page, R.H. Miller, and D.R. Keeny (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy 9. American Society of Agronomy, Madison, WI.
  6. Aydinalp, C. and S. Marinova. 2003. Distribution and forms of heavy metals in some agricultural soils. Pol. J. Environ. Stud. 12:629-633.
  7. Baath, E., K. Arnebrant, and A. Nordgren. 1991. Microbial biomass and ATP in smelter-polluted forest humus. Bull. Environ. Contam. Toxicol. 47:278-282. https://doi.org/10.1007/BF01688652
  8. Baath, E., Montserrat, A. Diaz-Ravina, A. Frostegard, and C.D. Campbell. 1998. Effect of metal-rich sludge amendments on the soil microbial community. Appl. Environ. Microbiol. 64:238-245.
  9. Baker, B. and D. Tracy. 2008. Elemental contaminants in fertilizers and soil amendments used in organic production. Cultivating the future based on science: 2nd Conference of the International Society of Organic Agriculture Research ISOFAR, Modena, Italy.
  10. Bhattacharyya, P., S. Tripathy, K. Kim, and S. Kim. 2008. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotox. Environ. Safe. 71:149-156. https://doi.org/10.1016/j.ecoenv.2007.08.015
  11. Benavides, M.P., S.M. Gallego, and M.L. Tomaro. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17:21-34.
  12. Borneman, J. and E.W. Triplett. 1997. Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63:2647-2653.
  13. Bossio, D.A., K.M. Scow, N. Gunapala, and K.J. Graham. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1-12. https://doi.org/10.1007/s002489900087
  14. Brookes, P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fert. Soils 19:269-279. https://doi.org/10.1007/BF00336094
  15. Broos, K., L.M. Macdonald, M.S.J. Warne, D.A. Heemsbergen, M.B. Barnes, M. Bell, and M.J. McLaughlin. 2007. Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biol. Biochem. 39:2693-2695. https://doi.org/10.1016/j.soilbio.2007.05.014
  16. Bruins, M.R., S. Kapil, and F.W. Oehme. 2000. Microbial resistance to metals in the environment. Ecotox. Environ. Safe. 45:198-207. https://doi.org/10.1006/eesa.1999.1860
  17. CCME. 1999. Canadian soil quality guidelines for the protection of environmental and human health: Zinc. In Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg.
  18. Chien, C., Y. Kuo, C. Chen, C. Hung, C. Yeh, and W. Yeh. 2008. Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. J. Environ. Sci. 20:359-363. https://doi.org/10.1016/S1001-0742(08)60056-X
  19. Christensen, T.H. 1984. Cadmium soil sorption at low concentrations. I. Effect of time, cadmium load, pH and calcium. Water Air Soil Pollut. 21:105-114. https://doi.org/10.1007/BF00163616
  20. Cole, J.R., B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, G.M. Garrity, and J.M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): Sequences and tools for highthroughput rRNA analysis. Nucleic Acids Res. 33:D294-D296.
  21. Commission of the European Communities. 1986 Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities L181 (86/278/EEC): 6-12.
  22. Crowley, D. 2008. Impacts of metals and metalloids on soil microbial diversity and ecosystem function. 5th International Symposium ISMOM, Pucon, Chile.
  23. Dahlin, S., E. Witter, A. Martenson, A. Turner, and E. Baath. 1997. Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biol. Biochem. 29:1405-1415. https://doi.org/10.1016/S0038-0717(97)00048-5
  24. Dai, J., T. Becquer, J. Rouiller, G. Reversat, F. Bernhard-Reversat, and P. Lavelle. 2004. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl. Soil Ecol. 25:99-109. https://doi.org/10.1016/j.apsoil.2003.09.003
  25. Dick, W.A. and M.A. Tabatabai. 1983. Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci. 136:19-25. https://doi.org/10.1097/00010694-198307000-00003
  26. Dix, N.J. and J. Webster. 1995. Fungal ecology. Chapman & Hall, London.
  27. Edvantoro, B.B., R. Naidu, M. Megharaj, and I. Singleton. 2003. Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dip sites. Ecotox. Environ. Safe. 55:344-351. https://doi.org/10.1016/S0147-6513(02)00092-1
  28. Ellis, R.J., P. Morgan, A.J. Weightman, and J.C. Fry. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy metal contaminated soil. Appl. Environ. Microbiol. 69:3223-3230. https://doi.org/10.1128/AEM.69.6.3223-3230.2003
  29. Eivazi, F. and M.A. Tabatabai. 1990. Factors affecting glucosidase and galactosidase activities in soils. Soil Biol. Biochem. 22:891-897. https://doi.org/10.1016/0038-0717(90)90126-K
  30. Ewers, U. and H.W. Schlipköter. 1990. Lead. In E. Merian (ed.) Metals and their compounds in the environment. Wiley-VCH, Weinheim.
  31. Fliessbach, A., R. Martens, and H.H. Reber. 1994. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 26:1201-1205. https://doi.org/10.1016/0038-0717(94)90144-9
  32. Ghosh, A.K., P. Bhattacharyya, and R. Pal. 2004. Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environ. Int. 30:491-499. https://doi.org/10.1016/j.envint.2003.10.002
  33. Giller, K.E., E. Witter, and S.P. McGrath. 2009. Heavy metals and soil microbes. Soil Biol. Biochem. 41:2031-2037. https://doi.org/10.1016/j.soilbio.2009.04.026
  34. Giller, K.E., E. Witter, and S.P. McGrath. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30:1389-1414. https://doi.org/10.1016/S0038-0717(97)00270-8
  35. Graham, J.H., N.C. Hodge, and J.B. Morton. 1998. Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 61:58-64.
  36. Grundmann, G.L. and F. Gourbière. 1999. A micro-sampling approach to improve the inventory of bacterial diversity in soil. Appl. Soil Ecol. 387:1-4.
  37. Haferburg, G. and E. Kothe. 2007. Microbes and metals: interactions in the environment. J. Basic Microbiol. 47:453-467. https://doi.org/10.1002/jobm.200700275
  38. Hattori, T., H. Mitsui, H. Haga, N. Wakao, S. Shikano, K. Gorlach, Y. Kasahara, A. El-Beltagy, and R. Hattori. 1997. Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72:21-28. https://doi.org/10.1023/A:1000201017238
  39. He, Z., Y. Deng, J.D. Van Nostrand, Q. Tu, M. Xu, C.L. Hemme, X. Li, L. Wu, T.J. Gentry, Y. Yin, J. Liebich, T.C. Hazen, and J. Zhou. 2010. GeoChip 3.0 as a highthroughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4:1167-79. https://doi.org/10.1038/ismej.2010.46
  40. Hinojosa, M.B., J.A. Carreira, R. Garcia-Ruız, and R.P. Dick. 2005. Microbial response to heavy metal-polluted soils: community analysis from phospholipids-linked fatty acids and ester-linked fatty acids extracts. J. Environ. Qual. 34:1789-1800. https://doi.org/10.2134/jeq2004.0470
  41. Hu, Q., H. Qi, J. Zeng, and H. Zhang. 2007. Bacterial diversity in soils around a lead and zinc mine. J. Environ. Sci. 19:74-79. https://doi.org/10.1016/S1001-0742(07)60012-6
  42. Horsewell, J., T.W. Spier, A.P. van Schaik, L.C. Hunter, H.J. Percival, R.G. Mclaren, and L. Clucas. 2008. Impacts of heavy metals from land-applied Cu-, Ni-, and Zn-spiked sewage sludge on nitrogen fixing rhizobia. In G.H. Couto (ed.) Nitrogen fixation research progress. Nova Science Pub. Inc., New York.
  43. Ibekwe, A.M. and A.C. Kennedy. 1998. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 26:151-163. https://doi.org/10.1111/j.1574-6941.1998.tb00501.x
  44. Insam, H., T.C. Hutchinson, and H.H. Reber. 1996. Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biol. Biochem. 28:691-694. https://doi.org/10.1016/0038-0717(95)00182-4
  45. Islam, S.M.A., K. Fukushi, and K. Yamamoto. 2006. Contamination of agricultural soil by arsenic containing irrigation water in Bangladesh: overview of status and a proposal for novel biological remediation. In A.G. Kungolos (ed.) Environmental toxicology. Wessex Institute of Technology, UK.
  46. Kakhki, F.V., G. Haghnia, and A. Lakzian. 2008. Effect of enriched sewage sludge on soil urease activity. Soil Environ. 27:143-147.
  47. Kanazawa, S. and K. Mori. 1996. Isolation of cadmium-resistant bacteria and their resistance mechanisms. Soil Sci. Plant Nutr. 42:425-430.
  48. Kao, P., C. Huang, and Z. Hseu. 2006. Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63-70. https://doi.org/10.1016/j.chemosphere.2005.11.039
  49. Keeling, A.A. and G. Cater. 1998. Toxicity of copper, lead, nickel and zinc in agar culture to aerobic, diazotrophic bacteria extracted from waste-derived compost. Chemosphere 37:1073-1077. https://doi.org/10.1016/S0045-6535(98)00105-2
  50. Kelly, J.J., M. Haggblom, and R.L. Tate III. 1999. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol. Biochem. 31:1455-1465. https://doi.org/10.1016/S0038-0717(99)00059-0
  51. Kersten, M. 1988. Geochemistry of priority pollutants in anoxic sludges: Cadmium, arsenic, methyl mercury, and chlorinated organics. p. 170-213. In W. Salomons and U. Forstner (ed.) Chemistry and biology of solid waste. Springer-Verlag, Berlin.
  52. Khan, S., Q. Cao, A.E. Hesham, Y. Xia, and J. He. 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Environ. Sci. 19:834-840. https://doi.org/10.1016/S1001-0742(07)60139-9
  53. Kirk, J.L., L.A. Beaudette, M. Hart, P. Moutoglis, J.N. Klironomos, H. Lee, and J.T. Trevors. 2004. Methods of studying soil microbial diversity. J. Microbiol. Meth. 58: 169-188. https://doi.org/10.1016/j.mimet.2004.04.006
  54. Kızılkaya, R., T. Askın, B. Bayraklı, and M. Saglam. 2004. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 40:95-102. https://doi.org/10.1016/j.ejsobi.2004.10.002
  55. Kuperman, R.G. and M.M. Carreiro. 1997. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29: 179-190. https://doi.org/10.1016/S0038-0717(96)00297-0
  56. Lacatusu R., L. Anca-Rovena, L. Mihaela, and B.J. Gabriela. 2008. Macro and microelements abundance in some urban soil from Romania. Carpathian J. Earth Environ. Sci. 3:75-83.
  57. Lawlor, K, B.P. Knight, V.L. Barbosa-Jefferson, P.W. Lane, A.K. Lilley, G.I. Paton, S.P. McGrath, S.M. O'laherty, and P.R. Hirsch. 2000. Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiol. Ecol. 33:129-37. https://doi.org/10.1111/j.1574-6941.2000.tb00735.x
  58. Liao, M., C.L. Chen, L.S. Zeng, and C.Y. Huang. 2007. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis). Chemosphere 66: 1197-1205. https://doi.org/10.1016/j.chemosphere.2006.07.046
  59. Liao, M. and X.M. Xie. 2007. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotox. Environ. Safe. 66:217-223. https://doi.org/10.1016/j.ecoenv.2005.12.013
  60. Linton, P.E., L. Shotbolt, and A.D. Thomas. 2007. Microbial communities in long-term heavy metal contaminated ombrotrophic peats. Water Air Soil Pollut. 186:97-113. https://doi.org/10.1007/s11270-007-9468-z
  61. Liu, B., G. Jia, J. Chen, and G. Wang. 2006. A review of methods for studying microbial diversity in soils. Pedosphere 16:18-24. https://doi.org/10.1016/S1002-0160(06)60021-0
  62. Liu, S., Z. Yang, X. Wang, X. Zhang, R. Gao, and X. Liu. 2007. Effects of Cd and Pb pollution on soil enzymatic activities and soil microbiota. Frontiers Agric. China 1:85-89. https://doi.org/10.1007/s11703-007-0016-9
  63. Mansur, U.D. and K.A. Garba. 2010. Effects of some heavy metal pollutants on fertility characteristics of an irrigated savannah alfisol. Bayero J. Pure Appl. Sci. 3:255-259.
  64. Magnani, D. and M. Solioz. 2007. How bacteria handle copper. p. 259-285. In D.H. Nies and S. Silver (ed.) Bacterial transition metal homeostasis. Springer, Heidelberg, Germany.
  65. Majer, B.J., D. Tscherko, and A. Paschke. 2002. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat. Res. 515:111-124. https://doi.org/10.1016/S1383-5718(02)00004-9
  66. Martínez-Iñigo, M.J., A. Pérez-Sanz, I. Ortiz, J. Alonso, R. Alarcón, P. García, and M.C. Lobo. 2009. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and b-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Gracke. Chemosphere 75:1376-1381. https://doi.org/10.1016/j.chemosphere.2009.03.014
  67. McGrath, S.P., B. Knight, K. Killham, S. Preston, and G.I. Paton. 1999. Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor. Environ. Toxicol. Chem. 18:659-663. https://doi.org/10.1897/1551-5028(1999)018<0659:AOTTOM>2.3.CO;2
  68. Mench, M., G. Renella, A. Gelsomino, L. Landi, and P. Nannipieri. 2006. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environ. Pollut. 144:24-31. https://doi.org/10.1016/j.envpol.2006.01.014
  69. Mikanova, O. 2006. Effects of heavy metals on some soil biological parameters. J. Geochem. Explor. 88:220-223. https://doi.org/10.1016/j.gexplo.2005.08.043
  70. Moreira, F.M.S., A. Lange, O. Klauberg- Filho, J.O. Siqueira, R.S.A. Nobrega, and A.S. Lima. 2008. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. Anais da Academia Brasileiara de Ceincias 80:749-761.
  71. Muhammad, A., J. Xu, Z. Li, H. Wang, and H. Yao. 2005. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508-514. https://doi.org/10.1016/j.chemosphere.2005.01.001
  72. Muyzer, G. and K. Smalla. 1998. Application of denaturing gel electrophoresis (DGGE) and temperature gradient gel electrophoresis in microbial ecology. Antonie van Leeuwenhoek 73:127-141. https://doi.org/10.1023/A:1000669317571
  73. Nakatsu, C.H. 2007. Soil microbial community analysis using dentauring gel electrophoresis. Soil Sci. Soc. Am. J. 71:562-571. https://doi.org/10.2136/sssaj2006.0080
  74. Nicholson, F.A., S.R. Smith, B.J. Alloway, C. Carlton-Smith, and B.J. Chambers. 2003. An inventory of heavy metal inputs to agricultural soils in England and Wales. Sci. Total Environ. 311:205-219. https://doi.org/10.1016/S0048-9697(03)00139-6
  75. Oliveira, A. and M.E. Pampulha. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci. Engin. 102:157-161.
  76. Ortiz, O. and J.P. Alcaniz. 1993. Respiration potential of microbial biomass in a calcareous soil treated with sewage sludge. Geomicrobiol. J. 11:333-340. https://doi.org/10.1080/01490459309377963
  77. Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734-740. https://doi.org/10.1126/science.276.5313.734
  78. Patra, M. and A. Sharma. 2000. Mercury toxicity in plants. Bot. Rev. 66:379-409. https://doi.org/10.1007/BF02868923
  79. Petänen, T. and M. Romantschuk. 2002. Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Anal. Chim. Acta 456:55-61. https://doi.org/10.1016/S0003-2670(01)00963-1
  80. Qishlaqi, A., F. Moore, and G. Forghani. 2008. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ. Monit. Assess. 141:257-73. https://doi.org/10.1007/s10661-007-9893-x
  81. Renella, G., M. Mench, A. Gelsominoc, L. Landia, and P. Nannipieri. 2005. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol. Biochem. 37:1498-1506. https://doi.org/10.1016/j.soilbio.2005.01.013
  82. Rolling W.F.M. and L.M. Head. 2005. Prokaryotic systematics: PCR and sequence analysis of amplified 16s rRNA genes. p. 25-64. In A.M. Osborn and C.J. Smith (ed.) Molecular microbial ecology. Taylor and Francis, New York.
  83. Sanders, J.R., S.P. McGrath, and T.M. Adams. 1986. Zinc, copper and nickel concentrations in ryegrass grown on sludge contaminated soils of different pH. J. Sci. Food Agric. 37:961-968. https://doi.org/10.1002/jsfa.2740371003
  84. Shorrocks, V.M. and B.J. Alloway. 1985. Copper in plant, animal and human nutrition. Copper Development Association, Potters Bar, Hertfordshire.
  85. Smalla, K., U. Wachtendorf, H. Heuer, W.T. Liu, and L. Forney. 1998. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl. Environ. Microbiol. 64:1220-1225.
  86. Smolders, E., J. Buekers, I. Oliver, and M.J. McLaughlin. 2004. Soil properties affecting toxicity of Zn to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ. Toxicol. Chem. 23:2633-2640. https://doi.org/10.1897/04-27
  87. Sobolev, D. and M.F.T. Begonia. 2008. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int. J. Environ. Res. Public Health 5:450-456. https://doi.org/10.3390/ijerph5050450
  88. Stefanowicz, A. 2006. The Biolog plates technique as a tool in ecological studies of microbial communities. Polish J. Environ. Stud. 15:669-676.
  89. Stepniewska, Z., A.Wolinska, and J. Ziomek. 2009. Response of soil catalase activity to chromium contamination. J. Environ. Sci. 21:1142-1147. https://doi.org/10.1016/S1001-0742(08)62394-3
  90. Tabacchioni, S., L. Chiaini, A. Bevivino, C. Cantale, and C. Dalmastri. 2000. Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb. Ecol. 40:169-176.
  91. Torsvik, V., F.L. Daae, R.A. Sandaa, and L. Oslash;vreas. 1998. Novel techniques for analyzing microbial diversity in natural and perturbed environments. J. Biotechnol. 64:53-62. https://doi.org/10.1016/S0168-1656(98)00103-5
  92. Trevors, J.T. 1998. Bacterial biodiversity in soil with an emphasis on chemically contaminated soils. Water Air Soil Pollut. 101:45-67. https://doi.org/10.1023/A:1004953404594
  93. Vasquez-Murrieta, M.S., I. Migueles-Garduno, O. Franco-Hernandez, B. Govaerts, and L. Dendooven. 2006. C and N mineralization and microbial biomass in heavy metal contaminated soil. Eur. J. Soil Biol. 42:89-98. https://doi.org/10.1016/j.ejsobi.2005.10.002
  94. Vig, K., M. Megharaj, N. Sethunathan, and R. Naidu. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res. 8:121-135. https://doi.org/10.1016/S1093-0191(02)00135-1
  95. Wang, Y., J. Shi, H. Wang, Q. Lin, X. Chen, and Y. Chen. 2007a. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox. Environ. Safe. 67:75-81. https://doi.org/10.1016/j.ecoenv.2006.03.007
  96. Wang, Y., J. Shi, H. Wang, Q. Lin, X. Chen, and Y. Chen. 2007b. Heavy metal availability and impact on activity of soil microorganims along a Cu/Zn contamination gradient. J. Environ. Sci. 19:848-853. https://doi.org/10.1016/S1001-0742(07)60141-7
  97. Wang, F., J. Yao, Y. Si, H. Chen, M. Russel, K. Chen, Y. Qian, G. Zaray, and E. Bramanti. 2010. Short-time effect of heavy metals upon microbial community activity. J. Hazard. Mater. 173:510-516. https://doi.org/10.1016/j.jhazmat.2009.08.114
  98. Wardle, D.A. and A. Ghani. 1995. A critique of the microbial metabolic quotient ($qCO_2$) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 27:1601-1610. https://doi.org/10.1016/0038-0717(95)00093-T
  99. Yao, H., J. Xu, and C. Huang. 2003. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma 115:139-148. https://doi.org/10.1016/S0016-7061(03)00083-1
  100. Yoshida, Y., S. Furuta, and E. Niki. 1993. Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim. Biophys. Acta 1210:81-88. https://doi.org/10.1016/0005-2760(93)90052-B
  101. Zeng, L.S., M. Liao, C.L. Chen, and C.Y. Huang. 2007. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-leadrice (Oryza sativa L.) system. Ecotox. Environ. Safe. 67:67-74. https://doi.org/10.1016/j.ecoenv.2006.05.001
  102. Zhang, Y., H. Zhang, Z. Su, and C. Zhang. 2008a. Soil microbial characteristics under long-term heavy metal stress: a case study in Zhangshi wastewater irrigation area, Shenyang. Pedosphere 18:1-10. https://doi.org/10.1016/S1002-0160(07)60097-6
  103. Zhang, Y.L., J.L. Dai, R.Q. Wang, and J. Zhang. 2008b. Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong. China. Eur. J. Soil Biol. 44:84-91. https://doi.org/10.1016/j.ejsobi.2007.10.003
  104. Zheng, C.R., C. Tu, and H.M. Chen. 1999. Effect of combined heavy metal pollution on nitrogen mineralization potential, urease and phosphatase activities in a Typic Udic Ferrisol. Pedosphere 9:251-258.
  105. Zwolinski, M.D. 2007. DNA sequencing: strategies for soil microbiology. Soil Sci. Soc. Am. J. 71:592-600. https://doi.org/10.2136/sssaj2006.0125

Cited by

  1. Differential effect of coal combustion products on the bioavailability of phosphorus between inorganic and organic nutrient sources vol.261, 2013, https://doi.org/10.1016/j.jhazmat.2013.04.051
  2. Oilseed rape cultivation increases the microbial richness and diversity in soils contaminated with cadmium vol.18, pp.7, 2018, https://doi.org/10.1007/s11368-018-1938-y