• Title/Summary/Keyword: resource intensity

Search Result 193, Processing Time 0.024 seconds

Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors

  • Zhang, Wen-wen;Zhou, Xue-fei;Zhang, Ya-lei;Cheng, Peng-fei;Ma, Rui;Cheng, Wen-long;Chu, Hua-qiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2019-2028
    • /
    • 2018
  • Natural astaxanthin mainly derives from a microalgae producer, Haematococcus pluvialis. The induction of nitrogen starvation and high light intensity is particularly significant for boosting astaxanthin production. However, the different responses to light intensity and nitrogen starvation needed to be analyzed for biomass growth and astaxanthin accumulation. The results showed that the highest level of astaxanthin production was achieved in nitrogen starvation, and was 1.64 times higher than the control group at 11 days. With regard to the optimization of light intensity utilization, it was at $200{\mu}mo/m^2/s$ under nitrogen starvation that the highest astaxanthin productivity per light intensity was achieved. In addition, both high light intensity and a nitrogen source had significant effects on multiple indicators. For example, high light intensity had a greater significant effect than a nitrogen source on biomass dry weight, astaxanthin yield and astaxanthin productivity; in contrast, nitrogen starvation was more beneficial for enhancing astaxanthin content per dry weight biomass. The data indicate that high light intensity synergizes with nitrogen starvation to stimulate the biosynthesis of astaxanthin.

기업의 기술혁신 활동 결정요인: 자원기반 관점에서 본 탐색적 연구

  • 성태경
    • Journal of Technology Innovation
    • /
    • v.10 no.2
    • /
    • pp.69-90
    • /
    • 2002
  • This paper investigates the determinants of the firm's decision to carry out innovative activities in terms of the resource-based view(RBV) in strategic management. Two types of resources are distinguished: tangible(financial autonomy, firm size, capital intensity) and intangible(human resource, entrepreneurship, and commercial resource). R&D intensity and patent statistics are used as proxies for innovative activity. Specific hypotheses about their effect on the probability of a firm carrying out innovative activities are derived and tested on a sample of 337 listed firms in Korean manufacturing industry for the year 1999, using the logistic regression model. Empirical findings suggest that firm size and human resource are the main determinants of firm's internal innovative activities. The results show that the hypotheses concerning financial autonomy, debt ratio, capital intensity, entrepreneurship, and commercial resource are rejected.

  • PDF

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF

Optimization for Scenedesmus obliquus Cultivation: the Effects of Temperature, Light Intensity and pH on Growth and Biochemical Composition

  • Zhang, Yonggang;Ren, Li;Chu, Huaqiang;Zhou, Xuefei;Yao, Tianming;Zhang, Yalei
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.614-620
    • /
    • 2019
  • Microalgae have been explored as potential host species for biofuel production. Environmental factors affect algal growth and cellular composition. The effects of several key environmental factors, such as temperature, light, and pH of the medium on the growth and biochemical composition of Scenedesmus obliquus were investigated in this study. The highest growth rate of microalgae was observed at an optimal temperature of 25℃, 150 μmol/(m2·s) light intensity, and pH 10.0. The biochemical composition analysis revealed that the carbohydrate content decreased at lower (20℃) or higher temperature (35℃), whereas the protein and lipid contents increase at these temperatures. The fluctuation of light intensity significantly affected the contents of protein, carbohydrate, and lipid. The protein levels varied greatly when the pH of the medium was below 7.0. The carbohydrate and lipid contents significantly increased at pH above 7.0.

The Impact of Input and Output Tariffs on Domestic Employment across Industries: Evidence from Korea

  • Jang, Yong Joon
    • Journal of Korea Trade
    • /
    • v.24 no.8
    • /
    • pp.1-18
    • /
    • 2020
  • Purpose - This paper examines how differently output and input tariffs affect domestic employment across industrial characteristics of comparative advantage such as labor quality and capital intensity. Design/methodology - The paper focuses on 453 Korean industries from 2007 to 2014 because Korea is a typical example of a natural resource-scarce open economy and experienced the transition of the export pattern from labor intensity to technology intensity during this period. Findings - The results show that input tariff reduction stimulated total employment, focusing on the early 2010s, while the effects of output tariff reduction were statistically insignificant in general. However, the stimulation effects of output tariff reduction on employment were found in comparative advantage industries with greater labor quality and capital intensity. As for input tariff reduction, its stimulation effects on employment were more prominent in comparative disadvantage industries with lower labor quality and capital intensity. Originality/value - These results provide significant implications for natural resource-scarce open economies which are experiencing the transition of the export pattern from labor intensity to technology intensity and the unequal distribution of income after trade liberalization: imported intermediate inputs has become increasing important, leading to trade effects on employment and alleviation of income inequality.

Component Characteristics of Canned Oyster Processing Waste Water as a Food Resource (식품소재로서 굴통조림 가공부산액의 성분 특성)

  • 김진수;허민수;염동민
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.299-306
    • /
    • 2001
  • As a part of basic investigation for utilization of canned food processing by-products, a food components of the canned oyster processing waste water such as boiled and released water(BRW), wash water(WW) were investigated and compared with hot-water extracts from oyster. From the results of measuring heavy metal conte수, viable cells and coliform group, the canned oyster processing waste waters might not invoke health risk in using food resource. The contents of taste compounds (free amino acids, ATP related compounds, TMA (O) and total creatinine) of BRW and WW accounted for about 254% and 95%, respectively, in comparison with those of control (hot-water extract from oyster). The BRW showed a very high content of salt in comparing to the WW and control. In descending order, the values of whiteness index was WW, control and BRW. Sensory scores for color, oyster flavor intensity and saline taste were not significantly different between WW and control. But, BRW had the highest score in oyster flavor intensity, while had the lowest score in color and saline taste. But, the color and saline taste of BRW might be able to control by some pretreatment (concentration and drying in mild condition, desalination and recipe control etc). These results indicated that BRW and WW generated from various step during canned oyster processing could be a potential food resource by controlling of saline taste and color intensity.

  • PDF

Analyzing the Relation between Energy Intensity, Energy Price and TFP in Korea (에너지 집약도, 에너지 가격 그리고 기술 수준 간의 동태적 관계 분석)

  • Kim, Kijin;Won, DooHwan;Jung, Sukwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.2
    • /
    • pp.195-217
    • /
    • 2020
  • The improvement of energy intensity is drawing attention as a way to achieve sustainable development. Energy price and technology level are the main factors affecting energy intensity, and empirical studies on the relationship between the variables have been conducted mainly in overseas countries. However, analyzing the relation between energy intensity, energy price and technology has not been studied in Korea. Therefore, this study analyzed the dynamic relationship between energy intensity, energy price, and total factor productivity (TFP) in Korea. As a result of the analysis, the three variables form a long-term equilibrium relationship. The increase in TFP reduces energy intensity in both short and long term, and the long-term effect is greater than short-term effect. On the other hand, energy price do not have a significant impact on energy intensity. Granger causality test results show that energy intensity and TFP granger cause each other, but energy price is weak-exogenous.

Decomposition of Energy - Induced CO2 Emissions in Korea Using Log Mean Divisia Index Approach (로그 평균 디비지아 지수 기법을 이용한 이산화탄소 배출량 변화의 요인분해)

  • Chung, Hae-Shik;Lee, Kihoon
    • Environmental and Resource Economics Review
    • /
    • v.10 no.4
    • /
    • pp.569-589
    • /
    • 2001
  • We examine historical contributions of inter fuel substitution, changes in carbon efficiency and energy intensity, growth of economy and population to Korea's $CO_2$ emissions from 1970 to 1998 using the log mean weight Divisia index method. The study reveals that economic growth is the most significant factor to $CO_2$ emissions growth among the five factors. Changes in the fuel substitution and carbon coefficient are found negative contributors to $CO_2$ emissions growth. Energy intensity, which played dominant role in halting $CO_2$ emissions growth in the 1980s, began to play reversed role in the 1990s. When evaluated with the log mean Divisia index technique, deterioration of energy intensity in the 1990s is found worse and expected to contribute $CO_2$ emissions growth further.

  • PDF

Decomposition Analysis of Carbon Emission in Korea Electricity Industry : Utilizing the Logarithmic Mean Divisia Index Method to the Demand and the Supply Side (국내 전력산업의 탄소배출 변화요인 분석 : 로그평균디비지아지수를 이용한 수요와 공급 측면 분석)

  • Kim, Kyunam;Kim, Kangseok;Kim, Yeonbae
    • Environmental and Resource Economics Review
    • /
    • v.19 no.2
    • /
    • pp.243-282
    • /
    • 2010
  • In this paper, we analyze the components and trends of carbon emissions using the Logarithmic Mean Divisia Index decomposition method in Korean electricity industry during the period 1991~2007. In the demand side, carbon emissions are affected by electricity intensity and structural shift and especially electricity intensity is identified as the major factor which has lead carbon emissions decreasing. In the supply side, the result in variations of carbon emission for electric power generation depends on the influences of fossil fuel mix, fuel intensity, generation mix and so on. As a result fuel intensity is the most negative effect on both carbon emission intensity and the amount of carbon emission while the change of generation mix has a positive effect on increasing carbon emissions. And to conclude it needs to make the strategic policies to improve electricity intensity in the demand and to rise emission efficiency as well as to substitute thermal power generation in supply side.

  • PDF