• 제목/요약/키워드: resonance frequency analysis

검색결과 983건 처리시간 0.03초

Natural Frequency Analysis of Spring-Manipulator System for Force Generation Utilizing Mechanical Resonance

  • Kobayashi, Jun;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1651-1656
    • /
    • 2005
  • This paper describes a natural frequency analysis conducted to find out a suitable working area for a spring-manipulator system generating a large vibrating force with mechanical resonance. Large force generation is one of the functions that we hope for a robot. For example, a weeding robot is required to generate a large force, because some weeds have roots spreading deeply and tightly. The spring-manipulator system has a spring element as an end-effector, so it can be in a state of resonance with the elasticity of the spring element and the inertial characteristics of the manipulator. A force generation method utilizing the mechanical resonance has potential to produce a large force that cannot be realized by a static method. A method for calculating a natural frequency of a spring-manipulator system with the generalized inertia tensor is proposed. Then the suitable working area for the spring-manipulator system is identified based on a natural frequency analysis. If a spring-manipulator system operates in the suitable working area, it can sustain mechanical resonance and generate a large vibrating force. Moreover, it is shown that adding a mass at the tip of the manipulator expands the suitable working area.

  • PDF

공진 주파수 분석법에 의한 임플랜트의 안정성 측정에 관한 연구 (A STUDY ON THE MEASUREMENT OF THE IMPLANT STABILITY USING RESONANCE FREQUENCY ANALYSIS)

  • 박철;임주환;조인호;임헌송
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.182-206
    • /
    • 2003
  • Statement of problem : Successful osseointegration of endosseous threaded implants is dependent on many factors. These may include the surface characteristics and gross geometry of implants, the quality and quantity of bone where implants are placed, and the magnitude and direction of stress in functional occlusion. Therefore clinical quantitative measurement of primary stability at placement and functional state of implant may play a role in prediction of possible clinical symptoms and the renovation of implant geometry, types and surface characteristic according to each patients conditions. Ultimately, it may increase success rate of implants. Purpose : Many available non-invasive techniques used for the clinical measurement of implant stability and osseointegration include percussion, radiography, the $Periotest^{(R)}$, Dental Fine $Tester^{(R)}$ and so on. There is, however, relatively little research undertaken to standardize quantitative measurement of stability of implant and osseointegration due to the various clinical applications performed by each individual operator. Therefore, in order to develop non-invasive experimental method to measure stability of implant quantitatively, the resonance frequency analyzer to measure the natural frequency of specific substance was developed in the procedure of this study. Material & method : To test the stability of the resonance frequency analyzer developed in this study, following methods and materials were used : 1) In-vitro study: the implant was placed in both epoxy resin of which physical properties are similar to the bone stiffness of human and fresh cow rib bone specimen. Then the resonance frequency values of them were measured and analyzed. In an attempt to test the reliability of the data gathered with the resonance frequency analyzer, comparative analysis with the data from the Periotest was conducted. 2) In-vivo study: the implants were inserted into the tibiae of 10 New Zealand rabbits and the resonance frequency value of them with connected abutments at healing time are measured immediately after insertion and gauged every 4 weeks for 16 weeks. Results : Results from these studies were such as follows : The same length implants placed in Hot Melt showed the repetitive resonance frequency values. As the length of abutment increased, the resonance frequency value changed significantly (p<0.01). As the thickness of transducer increased in order of 0.5, 1.0 and 2.0 mm, the resonance frequency value significantly increased (p<0.05). The implants placed in PL-2 and epoxy resin with different exposure degree resulted in the increase of resonance frequency value as the exposure degree of implants and the length of abutment decreased. In comparative experiment based on physical properties, as the thickness of transducer increased, the resonance frequency value increased significantly(p<0.01). As the stiffness of substances where implants were placed increased, and the effective length of implants decreased, the resonance frequencies value increased significantly (p<0.05). In the experiment with cow rib bone specimen, the increase of the length of abutment resulted in significant difference between the results from resonance frequency analyzer and the $Periotest^{(R)}$. There was no difference with significant meaning in the comparison based on the direction of measurement between the resonance frequency value and the $Periotest^{(R)}$ value (p<0.05). In-vivo experiment resulted in repetitive patternes of resonance frequency. As the time elapsed, the resonance frequency value increased significantly with the exception of 4th and 8th week (p<0.05). Conclusion : The development of resonance frequency analyzer is an attempt to standardize the quantitative measurement of stability of implant and osseointegration and compensate for the reliability of data from other non-invasive measuring devices It is considered that further research is needed to improve the efficiency of clinical application of resonance frequency analyzer. In addition, further investigation is warranted on the standardized quantitative analysis of the stability of implant.

The Resonance Frequency of Sound Channel in Shallow Water a Thermocline

  • Yan, Jin;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.65-71
    • /
    • 1996
  • In shallow water with a thermocline, the characteristics of sound propagation strongly depend on the signal frequency. When only one of the source and the receiver is above the themocline, it is known that the intensity of the received signal changes largely and almost periodically as the signal frequency varies. This is the so-called channel resonance. By using the ray-mode approach, the formula relating the resonance frequency and the sound speed profile is obtained, and the resonance phenomenon is analyzed. Also this analysis is verified by numerical calculation.

  • PDF

유한요소 해석을 이용한 초음파원자현미경 캔틸레버의 접촉 공진주파수 특성 분석 (Analysis of Contact Resonance Frequency Characteristics for Cantilever of Ultrasonic-AFM Using Finite Element Method)

  • 이주민;한유하;곽동열;박익근
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.478-484
    • /
    • 2014
  • Ultrasonic atomic force microscopy(Ultrasonic-AFM) can be used to obtain images of the elastic properties of a subsurface and to evaluate the elastic properties by measuring the contact resonance frequency. When a tip is in contact with the sample, it is necessary to understand the cantilever behavior and the tip-sample interaction for the quantitative and reliable analysis. Therefore, precise analysis models that can accurately simulate the tip-sample contact are required; these can serve as good references for predicting the contact resonance frequency. In this study, modal analyses of the first four modes were performed to calculate the contact resonance frequency by using a spring model, and the deformed shapes of the cantilever were visualized at each mode. We presented the contact characteristics of the cantilever with a variety of contact conditions by applying the contact area, contact material thickness, and material properties as the parameters for the FEM analysis.

동적 특성을 고려한 차량 현가 시스템의 내구해석 기법 (Durability Analysis Technique of Automotive Suspension System Considering Dynamic Characteristics)

  • 한우섭;이혁재;임홍재;이상범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.336-341
    • /
    • 2003
  • In this paper, resonance durability analysis technique is presented for the fatigue life assessment considering dynamic effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the presented technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

  • PDF

용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석 (Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area)

  • 윤민수;송기오;이재민;하승우;조선영
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.

전달율 측정에 의한 점탄성재료의 복소탄성계수 추출시의 민감도 분석 (Sensitivity Analysis in the Estimation of Complex Elastic Modulus of Viscoelastic Materials by Transmissibility Measurements)

  • 안태길;허진욱;김광준
    • 소음진동
    • /
    • 제2권2호
    • /
    • pp.99-106
    • /
    • 1992
  • The complex Young's modulus of a viscoelastic material can be obtained as a function of frequency from the measurements of relative motion between the two ends of a bar-type specimen. Non-resonance method is usually used to obtain the complex Young's modulus over wide range of frequency including resonance points, while in resonance method information at resonance frequencies only is used. However, the complex Young's modulus obtained by the non-resonance method is often unreliable in the anti-resonance frequency regions because of the measurement noise problems. In this study, the effects of the random measurement errors on estimating the complex Young's modulus are studied in the aspect of sensitivity, and how to obtain the reliable frequency region for a given measurement error level is shown. The usable frequency regions in determining the complex Young's modulus are represented by a non-dimensional parameter formed with the wave length and specimen length.

  • PDF

스파크 점화기관의 연소실 형상에 따른 공진현상 해석에 관한 연구 (A Study on the Presure Resonance with Combustion Chamber Geometry for a Spark Ignition Engine)

  • 박경석;장석형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.890-895
    • /
    • 2001
  • Pressure resonance frequency that is caused in the combustion chamber can be interpreted to acoustic analysis. Until now the pressure resonance has been assumed and calculated to a disc type combustion chamber that neglected the combustion chamber height because the knock occurs near the TDC(top dead center). In this research FEM(fine element method) has been used to calculate the pressure resonance frequency inside the experimental engine combustion. The reduce error of the resonance frequency obtained by FEM has decreased about 50% compared to the calculation of Draper's equation. Due to the asymmetry in the shape of the combustion chamber that was neglected in Draper's equation we could find out that a new resonance frequency could be generated. To make the experimental results equal we could know that the speed of sound that satisfies Draper's equation was selected 13% higher than all the pent-roof type combustion considered.

  • PDF

공진회피를 위한 철도차량의 고유진동수 해석 및 측정에 관한 연구 (Investigating Natural Frequency Analysis and Measurement of Railway Vehicle to Avoid Resonance)

  • 홍도관;정재부;정승욱;김경배;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.713-719
    • /
    • 2012
  • This paper deals with the natural frequency analysis and two experiments to evaluate first twisting and bending natural frequency of railway vehicle. The KS R 9228 testing method is generally performed as pseudo FRF(frequency response function) which is widely used by two accelerometers. The exciting method is utilized using the load weight(1 ton release). The modal testing is used to verify KS R 9228 testing result and the natural frequency analysis result. The first twisting and bending natural frequency should be above 10 Hz by resonance which is mostly generated between bogie and vehicle frame exciting low frequency. The first twisting and bending natural frequency of railway vehicle are successfully verified between analysis and test.

우주환경하에서의 진동자의 주파수 변화 측정에 의한 질량 측정 시스템 및 방법

  • 김연규;김종우;김광식;최기혁
    • 항공우주기술
    • /
    • 제4권2호
    • /
    • pp.216-219
    • /
    • 2005
  • 이 논문은 무중력환경에서 작은 질량을 측정하기 위한 시스템의 설계와 테스트 결과 분석을 보여준다. 무중력환경에서는 지상에서와 같이 중력에 이용하여 무게를 측정하는 것은 어렵다. 그래서 여기서 제안된 방법은 측정하고자 하는 샘플의 무게에 대한 함수인 공진주파수를 측정하는 것이다. 우리가 무게에 대한 공진주파수를 안다면 샘플의 공진주파수를 측정하여 그 질량을 알 수 있다. 그래서 피에조 세라믹이라는 물질을 이용하여 시스템을 만든 후 실제로 측정하였다. 이 시스템은 여러 문제가 있었지만, 우리는 미지의 물체의 질량을 측정할 수 있었다.

  • PDF