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1. INTRODUCTION 
 

Large force generation is one of the functions that we hope 
for a robot. For example, a weeding robot, which is being 
developed in our laboratory, is required to generate a large 
force, because some weeds have roots spreading deeply and 
tightly[1]. The capability can be improved by providing the 
robot with powerful actuators, but it will cause a bloated robot 
that consumes energy uselessly because powerful actuators are 
ordinarily heavy. 

In order to achieve efficient large force generation, a robot 
should exploit its characteristics and capabilities to the full. 
For this end, Papadopoulos and Gonthier introduced the force 
workspace, which is a map indicating the locations where a 
robot can apply a given force, and showed that force 
capabilities can be improved by employing base mobility and 
manipulator redundancy[2]. Imamura and Kosuge proposed 
virtually unactuated joints so that a manipulator could 
generate a force that is larger than the load capacity[3]. 
Kobayashi, Kishida, and Ohkawa formulated and solved an 
optimization problem to find out work postures in which a 
robot manipulator realizes a force as large as possible[4]. 

This paper discusses a system that utilizes mechanical 
resonance. The mechanical resonance is usually treated as an 
undesirable phenomenon in designing mechanical systems, 
because it will lead to troubles of devices and become a source 
of breakdown. Therefore, engineers design systems carefully 
so that mechanical resonance will never happen. The 
mechanical resonance is generally considered to be an 
unfavorable thing. However, our research purpose is to utilize 
the mechanical resonance for a large force generation. 

We propose a manipulator generating a large vibrating 
force by exploiting mechanical resonance as shown in Fig. 1. 
The robot manipulator in the concept diagram performs 
weeding with a vibrating force that is produced by the 
mechanical resonance. The manipulator with a spring element 
as an end-effector is called spring-manipulator system. The 
spring-manipulator system can be in a state of resonance due 
to the elasticity of the spring and the inertial characteristics of 
the manipulator. Then the manipulator applies a large 
vibrating force to an object utilizing the mechanical resonance. 
The dynamic way exploiting the mechanical resonance will be 
able to generate a large force that cannot be realized by a static 
way. 

In the case of a simple spring-mass system, when you apply 
a sinusoidal force to the mass at the natural frequency, a 
mechanical resonance will appear. If you attempt to excite a 
resonance in a mechanical system, you need to find out the 
natural frequency of the system. Since a dynamics of the 
spring-mass system is simple, linear, and one degree of 
freedom, you can easily calculate the natural frequency from 
the mass and the spring constant. But, to the 
spring-manipulator system, it is not easy to figure out the 
natural frequency due to multiple degrees of freedom and 
nonlinearity of the manipulator. 

In order to solve the problem, we calculate inertial 
characteristics of a manipulator with the generalized inertia 
tensor, which is proposed by Asada[5] to evaluate the 
manipulator dynamics. Then the natural frequency of the 
spring-manipulator system is derived from the spring constant 
and the calculated inertial characteristics. 

You need to carefully decide a work posture of the 
manipulator, because the inertial characteristics of the 
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manipulator depend on the posture. It is undesirable that the 
manipulator poses a configuration where rate of natural 
frequency change is too high to sustain a mechanical 
resonance by a sinusoidal force. For this reason, we analyze a 
relationship between the natural frequency and the posture of a 
manipulator in order to find out a suitable posture to sustain 
the mechanical resonance. 

This paper is organized as follows. In the section 2, the 
model of the spring-manipulator system dealt with in this 
paper is introduced. The generalized inertia tensor of the 
spring-manipulator system is derived in the section 3. Then 
the natural frequency of the spring-manipulator system is 
calculated with the generalized inertia tensor, and the 
precision of the result is evaluated in the section 4. In the 
section 5, a suitable working area is figure out based on the 
calculated natural frequency, and the validity of the area is 
verified. In the section 6, it is shown that an additional mass at 
the tip of the manipulator extends the suitable working area. 
Finally, in the section 7, this paper is concluded. 

 
2. SPRING-MANIPULATOR SYSTEM 

 
The model of the spring-manipulator system used in this 

paper is shown in Fig. 2. This system consists of a two-link 
manipulator and a spring as an end-effector. The manipulator 
applies a force to a point through the spring. The 
spring-manipulator system is to apply a large vibrating force 
to the point in mechanical resonance. 

We assume in this paper that the end-effector is not a plate 
spring but an ideal linear spring to simplify the model. If the 
spring-manipulator system has a plate spring as the concept 
diagram shown in Fig. 1, the motion of the manipulator is 
constrained. The model adopted here describes the constraint 
as a rail that the tip of the manipulator moves on. Depending 
on a position of a place where the system applies a force, the 
rail slides in parallel and the length of the spring changes. 

Moreover, we suppose that the spring-manipulator system 
operates horizontal plane so that the gravity effect can be 
neglected. 

The symbols used in this paper are as follows: 
 

q1, q2: relative joint angles (q = [q1, q2]T) 
τ1, τ2: joint torques (τ = [τ1, τ2]T) 
xe, ye: tip position of manipulator (pe = [xe, ye]T) 
m1, m2: mass of links 
l1, l2: length of links 
lg1, lg2: distance from proximal joint to center of mass 
I1, I2: moment of inertia about center of mass 
ksp: spring constant 
 

3. GENERALIZED INERTIA TENSOR 
 

This section introduces an inertia tensor employed for 
calculating a natural frequency of the spring-manipulator 
system. 

Mechanical resonance is observed in a system when a 
frequency of a force applied to the system matches its natural 
frequency. If you know a natural frequency of a system, you 
can bring about a mechanical resonance intentionally. 

Natural frequencies of a mechanical system are calculated 
from the elasticity and inertia of the system. For example, in 
the case of a simple spring-mass system, the natural frequency 
is 2k m π Hz, where the m is the mass and the k is the 
spring constant of the spring-mass system. Since the m and k 

are constant, the natural frequency is also constant. 
Consequently, you can excite a spring-mass system with a 
harmonic vibration at the natural frequency. On the other hand, 
the inertial characteristics of a manipulator changes depending 
on its posture and a direction of applied force. Therefore 
natural frequencies of spring-manipulator systems should be 
calculated in consideration of the characteristic. 
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Fig. 2 Model of Spring-Manipulator System 

Asada proposed a generalized inertia tenor to represent an 
inertia property of a manipulator[5]. With this tensor, inertial 
characteristics of a manipulator can be figured out. In Ref. [6], 
we calculated the natural frequency of a spring-manipulator 
system different from the system shown in Fig. 2, and verified 
the validity of the results. Thus, the natural frequency of the 
spring-manipulator system dealt with in this paper is also 
estimated with the calculation method. 

A procedure to derive the generalized inertia tensor is 
shown here. First, the kinetic energy of the spring-manipulator 
system is described as follows: 

 
1 ( )
2
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where 

2 2 2
11 1 2 1 1 2 1 2 2 2 1 2 22 cos(g g g )M I I m l m l m l m l l q= + + + + + , 

2 2
12 2 2 2 2 1 2 2 22 2 2cos( ), 2g g gM I m l m l l q M I m l= + + = + . 
Second, with the Jacobian matrix J(q), the relationship 

between the joint angular velocity and the tip velocity of the 
manipulator is given by 
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,                               (2) 

 
where 

11 1 1 2 1 2 12 2 1 2sin( ) sin( ), sin( )J l q l q q J l q q= − − + = − + , 

21 1 1 2 1 2 22 2 1 2cos( ) cos( ), cos( )J l q l q q J l q q= + + = + . 

Next, substituting Eq. (2) into Eq. (1), the kinetic energy of 
the spring-manipulator system is expressed in the quadratic 
form of the tip velocity  as follows: ep
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This matrix G is called the generalized inertia tensor and 
defined as 
 

1( ) ( ) ( )T− −G J q M q J q  

xx xy

xy yy

G G
G G
⎡ ⎤

= ⎢
⎣ ⎦

⎥ ,                                   (4) 

 
where 

2 2
22 11 21 22 12 21 22( 2 )xx dG J M J J M J M g= − + en , 

12 22 11 11 22 12 21 12 11 21 22( ( ) )xy denG J J M J J J J M J J M g= − + + − , 
2 2

12 11 11 12 12 11 22( 2 )yy denG J M J J M J M g= − + , 

( )2 2 2
1 2 2deng l l sin q= . 

The generalized inertia tensor G expresses the inertia 
property of the spring-manipulator system shown in Fig. 2 
 

4. NATURAL FREQUENCY CALCULATION 
 

In this section, a mathematical equation of the natural 
frequency for a spring-manipulator system is proposed, and its 
validity is verified. 

Inertial characteristics of a manipulator depend on a 
direction of applied force. Given a unit vector u expressing a 
direction of applied force, a quadratic form uTGu gives the 
inertial characteristics at the tip of the manipulator[5]. Since 
the tip of the manipulator shown in Fig. 2 moves on a rail 
along the y axis, the unit vector u is set as u = [0, 1]T, and the 
required inertial characteristics is obtained as follows: 
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yy
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G G
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From analogy to a spring-mass system, the natural 

frequency of the spring-manipulator system is calculated by 
the following equation. 

 
1

2
sp

nGIT
yy

k
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Gπ
=                                  (6) 

 
Fig. 3 shows the calculated natural frequency of the 

spring-manipulator system calculated from Eq. (6). The 
horizontal axes indicate the tip position of the manipulator, 
and the vertical axis means the natural frequency. In the 
calculation, the manipulator’s posture, the angles of the 1st 
and 2nd joints, is calculated from the tip position (xe, ye) with 
the following inverse kinematic equations. 
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Fig. 3 Natural Frequency fnGIT Calculated from 

Generalized Inertia Tensor 
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The physical parameters of the system are m1=m2=2.0kg, 

l1=l2=0.30m, lg1=lg2=0.15m, I1=I2=0.015kgm2, ksp=500N/m. 
It is confirmed in Fig. 3 that the natural frequency varies 

depending on the posture of the manipulator. On the 
conditions established here, the natural frequency changes 
approximately between 1.0Hz and 4.5Hz. 

Next, in order to verify the natural frequency calculated 
from the generalized inertia tensor, free vibration simulations 
of the spring-manipulator system are conducted. Then the 
natural frequencies fnGIT calculated from Eq. (6) are compared 
with fundamental frequencies of the tip motion of the 
spring-manipulator system vibrating naturally without any 
input. 

The tip of the manipulator is shifted from the equilibrium 
position by -1cm at the initial states. The tip motion data 
obtained from the free vibration simulations are pushed to FFT, 
and then the resulting fundamental frequency is represented by 
fn1. Finally, the precision of the natural frequency fnGIT in Eq. 
(6) is evaluated by the difference from the fundamental 
frequency fn1 as follows: 

 
1ne nGIT nf f f− .                                 (9) 

 
Fig. 4 plots the natural frequency error fne. The fnGIT and fn1 

were calculated to two places of decimals. 
According to the graph in Fig. 4, the maximum error is 

0.02Hz; the result demonstrates that Eq. (6) calculates the 
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natural frequency of the spring-manipulator system with 
enough precision to excite mechanical resonance. The validity 
of the natural frequency Eq. (6) derived from the generalized 
inertia tensor is verified. 

 
5. SUITABLE WORKING AREA 

 
In this paper, a posture in which the rate of natural 

frequency change becomes low is called a suitable posture. If 
the rate of natural frequency change is low enough, the 
spring-manipulator system can keep being a state of resonance 
by a sinusoidal input, and increasing an effort force. Moreover, 
a collection of tip positions when a manipulator takes this 
suitable posture is defined as a suitable working area. 

As mentioned above, a natural frequency of a 
spring-manipulator system varies with changes in the posture 
of the manipulator, because the inertial characteristics of the 
manipulator depend on its posture. The fact means that the 
natural frequency constantly fluctuates during operations. It is 
desirable that the fluctuation of the natural frequency is low, 
because you will be able to excite the spring-manipulator 
system in mechanical resonance by a sinusoidal input on that 
condition. In this section, the suitable working area for a 
spring-manipulator system is investigated based on the rate of 
the natural frequency change. 

Since the tip of the manipulator shown in Fig. 2 is allowed 
to move on the straight rail, the natural frequency is 
differentiated with respect to the ye-coordinate of the tip 
position, and the absolute value of the partial differential 
coefficient nGIT ef y∂ ∂  is used to obtain a suitable working 
area for the spring-manipulator system. 

Fig. 5 represents the rate of natural frequency change 
nGIT ef y∂ ∂  in contour. The x and y axes of the graph express 

the tip position’s coordinates. 
The area where the rate of natural frequency change is less 

than 5Hz/m spreads on the bottom half of the graph shown in 
Fig. 5. On the other hand, on the neighborhood of the point 
(0.1m, 0.1m), the rate is higher, over 30Hz/m. From the graph 
shown in Fig. 5, the spring-manipulator system should take a 
posture where the ye-coordinate of the tip position is negative 
when you drive the spring-manipulator system at its natural 
frequency. If the tip of the manipulator is near (0.1m, 0.1m), it 
will be difficult to keep the mechanical resonance by a 
sinusoidal input, because the rate of natural frequency change 
is high. 

In order to verify the result about the suitable working area, 
excitation simulations of the spring-manipulator system are 
carried out. 
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Fig. 5 Rate of Natural Frequency Change 

 

The following input joint torque is applied for producing 
mechanical resonance in the spring-manipulator system. 

 
( )T

ref=τ J q f                                    (10) 
 
The vector fref is a reference force vector, and it is chosen as 
follows: 
 

[0, { (2 ) 1} T
ref nGITcos f tα π=f ]− .                    (11) 

 
This reference force vector is in direction of y axis, and it is 

sinusoidal at a calculated natural frequency fnGIT. The 
amplitude is adjusted with the parameterα , which is 1.0 in 
the following excitation simulations 

First, an excitation simulation is conducted on condition 
that the tip of the manipulator is put at (0.3m, -0.1m) at initial 
state. In this case, the natural frequency is 2.13Hz from Eq. (6), 
and the rate of its change is less than 5Hz/m. 

Fig. 6 is the time history of generated force through the 
spring in the simulation. From this figure, it is confirmed that 
a mechanical resonance appears and the generated force 
increases with time; the system produces approximately 60N 
within 5s. The torques applied to the joints are shown in Fig. 7. 
If the amount of each joint torque is limited to 1.2Nm and the 
reference force vector is slope, not vibrating, the system can 
generate only about 4N. With this fact, the dynamic way 
utilizing mechanical resonance succeeds in producing a large 
force that cannot be realized by the static way. 

Next, another excitation simulation is carried out on the 
condition that the rate of natural frequency change is high. The 
initial position of the tip is (0.1m, 0.1m). Then the natural 
frequency is 2.52Hz. 
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Fig. 6 Generated Force by Excitation 

inside Suitable Working Area: 
(xe, ye) = (0.3m, -0.1m) 

 
 

-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0

0 1 2 3 4 5

Time (s)

Jo
in

t T
or

qu
e 

(N
m

)

1st joint 2nd joint

 
Fig. 7 Input Joint Torques 
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Fig. 8 shows the result of the excitation simulation. The 
torques applied to the joints are shown in Fig. 9. It is revealed 
from the result that the mechanical resonance cannot be 
persisted in, and the spring-manipulator system can only 
generate about 20N. 

The results shown in Fig. 6 and Fig. 8 prove that operating 
in the suitable working area is important for the 
spring-manipulator utilizing mechanical resonance. 

 
6. EXPANSION OF SUITABLE WORKING 

AREA BY ADDITIONAL MASS 
 

In this section, in order to show that adding a mass at the tip 
of the manipulator is effective in expansion of the suitable 
working area, the sensitivity of the natural frequency fnGIT to 
the inertial characteristics Gyy is analyzed. 

Differentiating the natural frequency Eq. (6) with respect to 
the inertial characteristics Gyy, the sensitivity is obtained by 
 

3

1
4

spnGIT

yy yy

kf
G Gπ

∂
=

∂
.                              (12) 

 
Fig. 10 graphs the sensitivity nGIT yyf G∂ ∂ . According to 

Fig. 10, the change of the spring constant ksp hardly influences 
the sensitivity, but it sharply becomes large as the inertial 
characteristics Gyy is less than about 3kg. 

Fig. 10 reveals that increasing inertial characteristics Gyy 
causes reducing the sensitivity nGIT yyf G∂ ∂ , and then it results 

in expansion of a suitable working area. Therefore, we 
propose adding a mass at the tip of manipulator in order to 
enlarge the suitable working area. 
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Fig. 9 Input Joint Torques 
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Fig. 10 Sensitivity of Natural Frequency to Inertial 
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Next, the effectiveness of the additional mass is verified. If 

a manipulator has a mass at the tip, which is mw kg, the kinetic 
energy of the manipulator is describes as follows: 
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Thus, the generalized inertia tensor Gw of the manipulator 
with an additional mass is given by 
 

1( ) ( ) ( )T
w wm− − +G J q M q J q I  

wxx wxy

wxy wyy

G G
G G
⎡ ⎤
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⎣ ⎦

,                               (14) 

 
where 

wxx xx wG G m= + , , . wxy xyG G= wyy yy wG G m= +

Then the natural frequency is calculated by the following 
equation. 
 

1
2

sp
nGIT

wyy

k
f

Gπ
=                                 (15) 

 
Fig. 11 is the rate of natural frequency change recalculated 

with Eq. (15) on the condition that a mass of 0.5kg is added at 
the tip of the manipulator. Compared with Fig. 5, it is clear 
that adding a mass at the tip extends the suitable working area. 

Since the necessary joint torques increase due to adding a 
mass, you should design a spring-manipulator system 
considering a trade-off between the amount of suitable 
working area and the joint torques. 
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Fig. 11 Rate of Natural Frequency Change: 

A mass of 0.5kg is added at the tip 
of the manipulator. 

  
7. CONCLUSION 

 
In this paper, the calculation method for the natural 

frequency of the spring-manipulator system with the 
generalized inertia tensor was proposed, and the precision of 
the method was investigated. Then the suitable working area 
for the spring-manipulator system utilizing the mechanical 
resonance was identified based on the rate of natural 
frequency change. From the result, it was shown that the 
system could sustain the mechanical resonance and could 
generate a large vibrating force if the spring-manipulator 
system operates in the suitable working area. Moreover, the 
effectiveness of an additional mass at the tip of the 
manipulator for suitable working area expansion was 
demonstrated. 
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