• Title/Summary/Keyword: resonance field

Search Result 951, Processing Time 0.031 seconds

Design and Implementation of Portable NMR Probe Magnet

  • Junxia, Gao;Yiming, Zhang;Jiashen, Tian
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • The NMR's probe consists of the static magnetic field generator (magnetic source) and the RF coil. It is very strict for the homogeneity of the static magnetic field intensity of the magnetic source, so the cost of the magnetic source is more expensive in the entire nuclear magnetic resonance instrument. The magnetic source generally consists of electromagnet, permanent magnet and superconducting magnet. The permanent magnet basically needs not to spend on operation and maintenance and its cost of manufacture is much cheaper than the superconducting magnet. Therefore, the permanent magnet may be the only choice for the static magnetic field device if we want to use the magnetic resonance instrument as an analyzer for production by reducing price. A new probe magnet was developed on the basis of the permanent magnet ring in this paper to provide a technological way for reducing the manufacturing cost, weight and volume of the existing nuclear magnetic resonance instrument (including MRI) probe.

Basic RF Coils Used in Multi-channel RF Coil and Its B1 Field Distribution for Magnetic Resonance Imaging System (자기공명영상 촬영 장치에서 다채널 RF Coil에 이용되는 기본 구조 RF Coil의 B1 Field 분석)

  • Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4891-4895
    • /
    • 2010
  • RF coil is an important component of the Magnetic Resonance Imaging (MRI) system and the performance of RF coil is one of major factors for high SNR images. Sensitivity and RF field uniformity are parameters for evaluating RF coil performance. Since the B1 field is induced by RF coil, MR signal is strongly affected by RF coil structure and arrangement. In receiving MR signal, the RF coil sensitivity to MR Signal is also determined by the induced B1 field of RF coil. Therefore, the spatial distribution of B1 field must be verified. In this work, we performed computer simulation of the basic RF coil structures using Matlab and verified their sensitivity and uniformity through their B1 field distribution. This work will be useful for the advanced multi-channel RF coil design.

Background coefficients of the scattering from dielectric cylinder and cavity in the Resonance scattering theory (원통형 유전체와 공동에 대한 전자기파 공진산란이론의 배경성분)

  • Jung, Yong-Hwa;Jeon, Sang-Bong;Ahn, Chang-Hoi;Choi, Myoung-Seon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • Resonance Scattering Theory (RST) offers us an interpretation of the resonance phenomena in the scattered field. It is shown 1.hat the scattered field consists of the resonance and background components in the RST. The suitable background is necessary in order to obtain the resonance component. In this study, the background coefficients are investigated to obtain resonance components from electromagnetic scattering field for cylindrical object with different permittivities. We show some valid results valid for two models; cavity and dielectric cylinder.

  • PDF

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites

  • Lafta, Sadeq H.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.

The study on the wave-resonance for the bio-KI (생체(生體) 기(氣)의 파동(波動) 공명적(共鳴的)인 연구(硏究) 현황(現況))

  • Kim Gyeong-Cheul;Hong Mi-Suk
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.152-162
    • /
    • 2000
  • The present condition of study on the wave-resonance for the bio-KI is observed. The results are as follows: 1. Tn the wave-resonant stand point, the tendency of studying on KI is showed in the several field all over the world. 2. Because it is originated radionics, the wave-resonant tools of MRA insistenting minute-magnetism-resonance-apparatus need the more severe data in the side of electric circuit. 3. The wave resonance apparatus according to the frequency occurance transmits low-frequency's vibration ratio to the electric stimulating aspect. 4. The wave-water is considered on the application of wave-resonance transcription on the water, and needs the comprehension of torsion-field level.

  • PDF

Measuring T1 contrast in ex-vivo prostate tissue at the Earth's magnetic field

  • Oh, Sangwon;Han, Jae Ho;Kwon, Ji Eun;Shim, Jeong Hyun;Lee, Seong-Joo;Hwang, Seong-Min;Hilschenz, Ingo;Kim, Kiwoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • A former study has shown that the spin-lattice relaxation time ($T_1$) in cancerous prostate tissue had enhanced contrast at an ultra-low magnetic field, $132{\mu}T$. To study the field dependence and the origin of the contrast we measured $T_1$ in pairs of ex-vivo prostate tissues at the Earth's magnetic field. A portable and coil-based nuclear magnetic resonance (NMR) system was adopted for $T_1$ measurements at $40{\mu}T$. The $T_1$ contrast, ${\delta}=1-T_1$ (more cancer)/$T_1$(less cancer), was calculated from each pair. Additionally, we performed pathological examinations such as Gleason's score, cell proliferation index, and micro-vessel density (MVD), to quantify correlations between the pathological parameters and $T_1$ of the cancerous prostate tissues.

T1-Based MR Temperature Monitoring with RF Field Change Correction at 7.0T

  • Kim, Jong-Min;Lee, Chulhyun;Hong, Seong-Dae;Kim, Jeong-Hee;Sun, Kyung;Oh, Chang-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.218-228
    • /
    • 2018
  • Purpose: The objective of this study is to determine the effect of physical changes on MR temperature imaging at 7.0T and to examine proton-resonance-frequency related changes of MR phase images and T1 related changes of MR magnitude images, which are obtained for MR thermometry at various magnetic field strengths. Materials and Methods: An MR-compatible capacitive-coupled radio-frequency hyperthermia system was implemented for heating a phantom and swine muscle tissue, which can be used for both 7.0T and 3.0T MRI. To determine the effect of flip angle correction on T1-based MR thermometry, proton resonance frequency, apparent T1, actual flip angle, and T1 images were obtained. For this purpose, three types of imaging sequences are used, namely, T1-weighted fast field echo with variable flip angle method, dual repetition time method, and variable flip angle method with radio-frequency field nonuniformity correction. Results: Signal-to-noise ratio of the proton resonance frequency shift-based temperature images obtained at 7.0T was five-fold higher than that at 3.0T. The T1 value increases with increasing temperature at both 3.0T and 7.0T. However, temperature measurement using apparent T1-based MR thermometry results in bias and error because B1 varies with temperature. After correcting for the effect of B1 changes, our experimental results confirmed that the calculated T1 increases with increasing temperature both at 3.0T and 7.0T. Conclusion: This study suggests that the temperature-induced flip angle variations need to be considered for accurate temperature measurements in T1-based MR thermometry.

Physical Principles of Magnetic Resonance Imaging in Animal (동물에서 자기 공명 영상 진단의 물리적 원리)

  • 김종규
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 1999
  • Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.

  • PDF

Josephson plasma excitation in vortex states

  • Kadowaki, K.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.21-21
    • /
    • 2000
  • The Josephson Plasma resonance in single crystalling Bi2Sr2CaCu2O8 has been investigated at a microwave frequency of 35 GHz in a cavity resonator. A sharp resonance is observed in a perpendicular oscillating magnetic field. The former is independent of the sample dimension, shile the latter shift to higher field as the sample size L is reduced, and it disappears when L becomes smaller than the critical length. The longitudinal plasma mode is a Nambu-Goldston mode in a superconductor, the experimental distinction between the longitudinal and the transverse mode leads to the conclusion that the existence of the Nambu-Goldston mod as predicted by Anderson was experimentally confirmed by direct observation of the Josephson plasma resonance with longitudinal excitations. The finite gap found in Josephson plasma resonance also provides a direct proof of the Anderson-Higgs mechanism within the context of the spontaneously broken phase symmetry of the Gauge-field theory in a superconductor.

  • PDF

The electric field dependence of the resonance characteristics and piezoelectric constant of the PZT-PMNS ceramics (인가전계에 따른 PZT-PMNS 세라믹의 공진특성 및 압전정수의 변화경향 분석)

  • Oh, Jin-Heon;Park, Cheol-Hyeon;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1258-1259
    • /
    • 2008
  • In this paper, the variable tendency of the piezoelectric constant and resonance characteristics of the piezoelectric ceramics due to the electric field is studied. The practical application of piezoelectric ceramics is not only applied in field of small signal. For example, in case of an ultrasonic motor, 120 ${\sim}$ 130Vrms of driving voltage is needed. Therefore, to examine the characteristics of piezoelectric ceramics in large signal contributes to reducing the susceptibility to the multifarious application and securing the ease of the production of control circuit. These contributions may be connected to the expansion of industrial application. We fabricated disk-type piezoelectric ceramic samples by using conventional method and measured the resonance characteristics of these samples under from low to high voltage driving conditions. According to increasing the value of the input voltage, we measured the resonance frequency of the piezoelectric ceramic, and inquired into the cause of these phenomena.

  • PDF