Browse > Article
http://dx.doi.org/10.6564/JKMRS.2019.23.1.012

Measuring T1 contrast in ex-vivo prostate tissue at the Earth's magnetic field  

Oh, Sangwon (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Han, Jae Ho (Department of Pathology, Ajou University School of Medicine)
Kwon, Ji Eun (Department of Pathology, Ajou University School of Medicine)
Shim, Jeong Hyun (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Lee, Seong-Joo (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Hwang, Seong-Min (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Hilschenz, Ingo (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Kim, Kiwoong (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.23, no.1, 2019 , pp. 12-19 More about this Journal
Abstract
A former study has shown that the spin-lattice relaxation time ($T_1$) in cancerous prostate tissue had enhanced contrast at an ultra-low magnetic field, $132{\mu}T$. To study the field dependence and the origin of the contrast we measured $T_1$ in pairs of ex-vivo prostate tissues at the Earth's magnetic field. A portable and coil-based nuclear magnetic resonance (NMR) system was adopted for $T_1$ measurements at $40{\mu}T$. The $T_1$ contrast, ${\delta}=1-T_1$ (more cancer)/$T_1$(less cancer), was calculated from each pair. Additionally, we performed pathological examinations such as Gleason's score, cell proliferation index, and micro-vessel density (MVD), to quantify correlations between the pathological parameters and $T_1$ of the cancerous prostate tissues.
Keywords
ultra-low field NMR; portable NMR; $T_1$ contrast; prostate cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Y. Poon, R. W. McCallum, M. M. Henkelman, M. J. Bronskill, S. B. Sutcliffe, M. A. Jewett, W. D. Rider, and A. W. Bruce, Radiology 154,143 (1985)   DOI
2 H. Hricak, G. C. Dooms, R. B. Jeffrey, A. Avallone, D. Jacobs, W. K. Benton, P. Narayan, and E. A. Tanagho, Radiology 162, 331 (1987)   DOI
3 J. O. Barentsz, J. C. Weinreb, S. Verma, H. C. Thoeny, C. M. Tempany, F. Shtern, A. R. Padhani, D. Margolis, K. J. Macura, M. A. Haider, F. Cornud, and P. L. Choyke, Eur. Urol. 69, 41 (2016)   DOI
4 S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, Magn. Reson. Med. 67, 1138 (2012)   DOI
5 A. Mohoric, and J. Stepisnik, Prog. NMR. Spectrosc. 54, 166 (2009)   DOI
6 S. Manda, S. Oh, and M. D. Hurlimann, J. Magn. Reson. 261, 121 (2015)   DOI
7 R. R. E. Fenrich, C. Beaulieu, and P. S. Allen, NMR in Biomed. 14, 133 (2001)   DOI
8 J. R. Zimmerman, and W. E. Brittin, J. Phys. Chem. 61, 1328 (1957)   DOI
9 L. Venkataramanan, Y. Q. Song, and M. Hurlimann, IEEE Trans. on Signal Proc.50, 1017 (2002)   DOI
10 Y. Q. Song, Concepts Magn. Reson. Part A 18, 97 (2003)   DOI
11 J. Clarke, M. Hatridge, and M. Mossle, Annu. Rev. Biomed. Eng. 9, 389 (2007)   DOI
12 C. M. Hoeks, J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford, S. W. Heijmink, T. W. Scheenen, P. C. Vos, H. Huisman, I. M. Van Oort, J. A. Witjes, A. Heerschap, and J. J. Futterer, Radiology 261, 46 (2011)   DOI
13 S. -J. Lee, J. H. Shim, K. Kim, S.-M. Hwang, K. K. Yu, S. Lim, J. H. Han, H. Yim, J.-H. Kim, Y. S. Jung, and K. S. Kim, Biomed. Res. Int. 2015, 385428 (2015)
14 P. M. J. McSheehy, C. Weidensteiner, C. Cannet, S. Ferretti, D. Laurent, S. Ruetz, M. Stumm, and P. R. Allergrini, Clin. Cancer Res. 16, OF1 (2010)   DOI
15 M. K. Ravoori, M. Nishimura, S. P. Singh, C. Lu, L. Han, B. P. Hobbs, S. Pradeep, H. J. Choi, J. A. Bankson, A. K. Sood, and V. Kundra, PLoS ONE 10, e0131095 (2015)   DOI
16 M. R. Ruggiero, S. Baroni, S. Pezzana, G. Ferrante, S. G. Crich, and S. Aime, Angew. Chem. Int. Ed. 57, 7468 (2018)   DOI
17 R. Damadian, Science 171, 1151 (1971)   DOI
18 E. Belorizky, P.H. Fries, L. Helm, J. Kowalewski, D. Kruk, R. R. Sharp, and P. O. Westlund, J. Chem. Phy. 128, 052315 (2008)   DOI
19 K.-W. Huang, H.-H. Chen, H.-C. Yang, H.-E. Horng, S.-H. Liao, S. Y. Yang, J.-J. Chieh, and L.-M. Wang, PLoS ONE 7, e47057 (2012)   DOI
20 T. E. Yankeelov, D. R. Pickens, and R. R. Price, Quantitative MRI in cancer 1st ed. (Boca Raton, CRC Press, 2011)
21 J. Korringa, D. O. Seevers, and H. C. Torrey, Phys. Rev. 127, 1143 (1962)   DOI
22 L. M. De Leon-Rodriguez, A. F. Martins, M. C. Pinho, N. M. Rofsky, and A. D. Sherry, J. Magn. Reson. Imaging. 42, 545 (2015)   DOI
23 R. L. Kleinberg, W. E. Kenyon, and P. P. Mitra, J. Mag. Res. A 108, 206 (1994)   DOI
24 B. Blumich, J. Perlo, and F. Casanova, Prog. Nucl. Magn. Reson. Spectr. 52, 197 (2008)   DOI
25 H. U. Ahmed, A. E. Bosaily, L. C. Brown, R. Gabe, R. Kaplan, M. K. Parmar, Y. Collaco-Moraes, K. Ward, R. G. Hindley, A. Freeman, A. P. Kirkham, R. Oldroyd, C. Parker, M. and Emberton, Lancet 389, 815 (2017)   DOI
26 P. J. McDonald, J. -P. Korb, J. Mitchell, and L. Monteilhet, Phys. Rev. E 72, 011409 (2005)   DOI
27 K. R. Brownstein and C. E. Tarr, Phys. Rev. A 19, 2446 (1979)   DOI
28 J. P. B. O'Connor, J. H. Naish, A. Jackson, J. C. Waterton, Y. Watson, S. Cheung, D. L. Buckley, D. M. McGrath, G. A. Buonaccorsi, S. J. Mills, C. Roberts, G. C. Jayson, and G. J. M. Parker, Magn. Reson. Med. 61, 75 (2009)   DOI
29 American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society (2017)
30 S. Verma and A. Rajesh, AJR Am. J. Roentgenol. 196, S1 (2011)   DOI