DOI QR코드

DOI QR Code

Measuring T1 contrast in ex-vivo prostate tissue at the Earth's magnetic field

  • Oh, Sangwon (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science) ;
  • Han, Jae Ho (Department of Pathology, Ajou University School of Medicine) ;
  • Kwon, Ji Eun (Department of Pathology, Ajou University School of Medicine) ;
  • Shim, Jeong Hyun (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science) ;
  • Lee, Seong-Joo (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science) ;
  • Hwang, Seong-Min (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science) ;
  • Hilschenz, Ingo (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science) ;
  • Kim, Kiwoong (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
  • Received : 2019.03.08
  • Accepted : 2019.03.17
  • Published : 2019.03.20

Abstract

A former study has shown that the spin-lattice relaxation time ($T_1$) in cancerous prostate tissue had enhanced contrast at an ultra-low magnetic field, $132{\mu}T$. To study the field dependence and the origin of the contrast we measured $T_1$ in pairs of ex-vivo prostate tissues at the Earth's magnetic field. A portable and coil-based nuclear magnetic resonance (NMR) system was adopted for $T_1$ measurements at $40{\mu}T$. The $T_1$ contrast, ${\delta}=1-T_1$ (more cancer)/$T_1$(less cancer), was calculated from each pair. Additionally, we performed pathological examinations such as Gleason's score, cell proliferation index, and micro-vessel density (MVD), to quantify correlations between the pathological parameters and $T_1$ of the cancerous prostate tissues.

Keywords

JGGMB2_2019_v23n1_12_f0001.png 이미지

Figure 1. An NMR pulse sequence for T1 measurements. A pre-polarizing magnetic field (Bp = 50 mT) was applied for 2 s to enhance the magnetization and then ramped down adiabatically, aligning the magnetization along the Earth’s magnetic field (x-axis). A representative sample in a vial is shown in the inset.

JGGMB2_2019_v23n1_12_f0002.png 이미지

Figure 2. Exemplary fast Laplace inversion and double Gaussian fits. T1 distributions from FLI (red solid line) in cases of 47% (a) and 24% (b) prostate cancer are shown. The Gaussian function (G1, dashed green line) with a smaller peak was chosen for T1 distribution of cancerous prostate tissue and the other Gaussian function (G2, dash-dot golden line) represented benign prostate tissue. Their sum (G Fit, blue dotted line) was compared to the T1 distribution from FLI. Fitting curves from FLI are compared to the experimental data in (c) and (d) where the percentages of prostate cancerous tissue are 47 and 24%, respectively. For histologic examination, the prostate tissue that underwent an NMR measurement was sectioned at every 2 mm of 4 μm thickness; and hematoxylin and eosin staining was performed. Percentage of cancerous parts (marked as 'X' in insets of (c) and (d)) in the whole tissue in each slice was used to calculate the average cancer percentage.

JGGMB2_2019_v23n1_12_f0003.png 이미지

Figure 3. T1 vs. percentage of cancerous part (PCA,B) in tissues and T1 contrast ( δ = 1- T1B/T1A)

JGGMB2_2019_v23n1_12_f0004.png 이미지

Figure 4. Comparisons between T1 and results from the pathological examinations. Pathological examinations such as Gleason's score (a), cell proliferation marker level (MIB- 1, (b)), and micro-vessel density (MVD, (c)), were compared to T1 and shown in Fig. 4. Representative image (d) of immunohistochemical staining with CD34 antibody; brown colored areas (green arrow, one such area) indicate locations of the micro-vessels. Gleason's score was not correlated with T1, but MVD was weakly correlated with T1.

Table 1. Prostate specimens and measured results.

JGGMB2_2019_v23n1_12_t0001.png 이미지

References

  1. American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society (2017)
  2. S. Verma and A. Rajesh, AJR Am. J. Roentgenol. 196, S1 (2011) https://doi.org/10.2214/AJR.09.7196
  3. H. U. Ahmed, A. E. Bosaily, L. C. Brown, R. Gabe, R. Kaplan, M. K. Parmar, Y. Collaco-Moraes, K. Ward, R. G. Hindley, A. Freeman, A. P. Kirkham, R. Oldroyd, C. Parker, M. and Emberton, Lancet 389, 815 (2017) https://doi.org/10.1016/S0140-6736(16)32401-1
  4. P. Y. Poon, R. W. McCallum, M. M. Henkelman, M. J. Bronskill, S. B. Sutcliffe, M. A. Jewett, W. D. Rider, and A. W. Bruce, Radiology 154,143 (1985) https://doi.org/10.1148/radiology.154.1.2578070
  5. H. Hricak, G. C. Dooms, R. B. Jeffrey, A. Avallone, D. Jacobs, W. K. Benton, P. Narayan, and E. A. Tanagho, Radiology 162, 331 (1987) https://doi.org/10.1148/radiology.162.2.3797645
  6. J. O. Barentsz, J. C. Weinreb, S. Verma, H. C. Thoeny, C. M. Tempany, F. Shtern, A. R. Padhani, D. Margolis, K. J. Macura, M. A. Haider, F. Cornud, and P. L. Choyke, Eur. Urol. 69, 41 (2016) https://doi.org/10.1016/j.eururo.2015.08.038
  7. S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, Magn. Reson. Med. 67, 1138 (2012) https://doi.org/10.1002/mrm.24177
  8. A. Mohoric, and J. Stepisnik, Prog. NMR. Spectrosc. 54, 166 (2009) https://doi.org/10.1016/j.pnmrs.2008.07.002
  9. S. Manda, S. Oh, and M. D. Hurlimann, J. Magn. Reson. 261, 121 (2015) https://doi.org/10.1016/j.jmr.2015.10.014
  10. R. R. E. Fenrich, C. Beaulieu, and P. S. Allen, NMR in Biomed. 14, 133 (2001) https://doi.org/10.1002/nbm.685
  11. J. R. Zimmerman, and W. E. Brittin, J. Phys. Chem. 61, 1328 (1957) https://doi.org/10.1021/j150556a015
  12. L. Venkataramanan, Y. Q. Song, and M. Hurlimann, IEEE Trans. on Signal Proc.50, 1017 (2002) https://doi.org/10.1109/78.995059
  13. Y. Q. Song, Concepts Magn. Reson. Part A 18, 97 (2003) https://doi.org/10.1002/cmr.a.10072
  14. J. Clarke, M. Hatridge, and M. Mossle, Annu. Rev. Biomed. Eng. 9, 389 (2007) https://doi.org/10.1146/annurev.bioeng.9.060906.152010
  15. C. M. Hoeks, J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford, S. W. Heijmink, T. W. Scheenen, P. C. Vos, H. Huisman, I. M. Van Oort, J. A. Witjes, A. Heerschap, and J. J. Futterer, Radiology 261, 46 (2011) https://doi.org/10.1148/radiol.11091822
  16. P. M. J. McSheehy, C. Weidensteiner, C. Cannet, S. Ferretti, D. Laurent, S. Ruetz, M. Stumm, and P. R. Allergrini, Clin. Cancer Res. 16, OF1 (2010) https://doi.org/10.1158/1078-0432.CCR-09-2946
  17. M. K. Ravoori, M. Nishimura, S. P. Singh, C. Lu, L. Han, B. P. Hobbs, S. Pradeep, H. J. Choi, J. A. Bankson, A. K. Sood, and V. Kundra, PLoS ONE 10, e0131095 (2015) https://doi.org/10.1371/journal.pone.0131095
  18. M. R. Ruggiero, S. Baroni, S. Pezzana, G. Ferrante, S. G. Crich, and S. Aime, Angew. Chem. Int. Ed. 57, 7468 (2018) https://doi.org/10.1002/anie.201713318
  19. S. -J. Lee, J. H. Shim, K. Kim, S.-M. Hwang, K. K. Yu, S. Lim, J. H. Han, H. Yim, J.-H. Kim, Y. S. Jung, and K. S. Kim, Biomed. Res. Int. 2015, 385428 (2015)
  20. R. Damadian, Science 171, 1151 (1971) https://doi.org/10.1126/science.171.3976.1151
  21. K.-W. Huang, H.-H. Chen, H.-C. Yang, H.-E. Horng, S.-H. Liao, S. Y. Yang, J.-J. Chieh, and L.-M. Wang, PLoS ONE 7, e47057 (2012) https://doi.org/10.1371/journal.pone.0047057
  22. T. E. Yankeelov, D. R. Pickens, and R. R. Price, Quantitative MRI in cancer 1st ed. (Boca Raton, CRC Press, 2011)
  23. E. Belorizky, P.H. Fries, L. Helm, J. Kowalewski, D. Kruk, R. R. Sharp, and P. O. Westlund, J. Chem. Phy. 128, 052315 (2008) https://doi.org/10.1063/1.2833957
  24. J. Korringa, D. O. Seevers, and H. C. Torrey, Phys. Rev. 127, 1143 (1962) https://doi.org/10.1103/PhysRev.127.1143
  25. L. M. De Leon-Rodriguez, A. F. Martins, M. C. Pinho, N. M. Rofsky, and A. D. Sherry, J. Magn. Reson. Imaging. 42, 545 (2015) https://doi.org/10.1002/jmri.24787
  26. R. L. Kleinberg, W. E. Kenyon, and P. P. Mitra, J. Mag. Res. A 108, 206 (1994) https://doi.org/10.1006/jmra.1994.1112
  27. B. Blumich, J. Perlo, and F. Casanova, Prog. Nucl. Magn. Reson. Spectr. 52, 197 (2008) https://doi.org/10.1016/j.pnmrs.2007.10.002
  28. P. J. McDonald, J. -P. Korb, J. Mitchell, and L. Monteilhet, Phys. Rev. E 72, 011409 (2005) https://doi.org/10.1103/PhysRevE.72.011409
  29. K. R. Brownstein and C. E. Tarr, Phys. Rev. A 19, 2446 (1979) https://doi.org/10.1103/PhysRevA.19.2446
  30. J. P. B. O'Connor, J. H. Naish, A. Jackson, J. C. Waterton, Y. Watson, S. Cheung, D. L. Buckley, D. M. McGrath, G. A. Buonaccorsi, S. J. Mills, C. Roberts, G. C. Jayson, and G. J. M. Parker, Magn. Reson. Med. 61, 75 (2009) https://doi.org/10.1002/mrm.21815