• Title/Summary/Keyword: resonance circuit

Search Result 494, Processing Time 0.038 seconds

High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter (DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델)

  • Shin, Juhyun;Kim, Woojung;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

Construction of Simple Synthetic Testing Facility Using LC Resonance Circuit (L-C 공진회로를 이용한 대용량 간이 합성시험 설비 구축)

  • Kwon, G.J.;Kim, D.S.;Song, W.P.;Kwon, G.Y.;Chung, J.M.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.409-411
    • /
    • 1999
  • This paper proposes the circuit of the simple synthetic testing facility using LC resonance circuit. EMTP has been used to analyze the circuit. The obtained results indicate that the simple synthetic testing facility using LC resonance circuit can be easily designed and used very usefully for the research and development for the switchgears.

  • PDF

Analysis of the Effects According to Changes in Impedance and Electrical Equivalent Circuit Modeling of a SONAR Transducer Considering Dual Resonance (이중 공진을 고려한 소나 트랜스듀서의 전기적 등가회로 모델링 및 임피던스 변동에 따른 효과 분석)

  • Mok, Hyung-Soo;Choi, Jae-Hyuk;Han, Soo-Hee;Park, Sang-Zoon;Kim, Sung-Joo;Heo, Jun-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.144-151
    • /
    • 2015
  • The present study proposes a method for modeling a SONAR transducer with dual resonance. The Butterworth van-Dyke (BVD) model, a conventional SONAR transducer modeling method, can model only one resonance point. Hence, to address its disadvantage and to model the dual resonance, a dual resonance BVD model consisting of two serial BVD models is proposed. The two BVD models are connected in a series, and each simulate resonance at low frequency and high frequency, which allows the modeling of two resonance points. Eight elements compose the equivalent circuit by connecting the BVD models in a series, which is twice as great as that of the existing BVD model. The element value of the dual resonance BVD model is extracted by using the particle swarm optimization method. Analysis was also performed to identify the effects of changes in the value of elements that compose the equivalent circuit on the impedance characteristics of the equivalent circuit through simulation in which element values varied.

HIGH FREQUENCY INVERTER FOR FLUORESCENT LAMP: MODELING SIMULATION AND REGULATION

  • Lee, G.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1100-1103
    • /
    • 1992
  • Two different resonance inverters used as fluorescent lamp ballast are based on the self oscillation at the series resonance of the circuit components. Each circuit is simulated on a computer in order to explain its function and the variation of the circuit variables for each of the circuit elements. Experimental results have bean carried out on the unsymmetrical scheme to indicate the voltage and current of the fluorescent lamp operation at the high frequency.

  • PDF

Effective Power/Ground Network Design Techniques to suppress Resonance Effects in High-Speed/High-Density VLSI Circuits (고속/고밀도 VLSI 회로의 공진현상을 감소시키기 위한 효율적인 파워/그라운드 네트워크 설계)

  • Ryu Soon-Keol;Eo Yung-Seon;Shim Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.29-37
    • /
    • 2006
  • This paper presents a new analytical model to suppress RLC resonance effects which inevitably occur in power/ground lines due to on-chip decoupling capacitor and other interconnect circuit parasitics (i.e., package inductance, on-chip decoupling capacitor, and output drivers, etc.). To characterize the resonance effects, the resonance frequency of the circuit is accurately estimated in an analytical manner. Thereby, a decoupling capacitor size to suppress the resonance for a suitable circuit operation is accurately determined by using the estimated resonance frequency. The developed novel design methodology is verified by using $0.18{\mu}m$ process-based-HSPICE simulation.

A Simple Model for a DGS Microstrip Line with Stepped Impedance Slot-Lines

  • Woo, Duk-Jae;Lee, Taek-Kyung;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • In this paper, a simple equivalent circuit model for a defected ground structure (DGS) microstrip line with stepped impedance slot-lines in the ground plane is presented. In addition, an analytic expression for the resonance frequency of the proposed structure is derived. In equivalent circuit modeling, the capacitance and the inductance of the resonance circuit are evaluated from the dimensions of the etched pattern in the ground plane. The resonance frequencies calculated from the proposed method are compared with those obtained with an electromagnetic (EM) simulation.

Changes in Transmitting-Receiving Characteristics of Underwater Acoustic Transducer by Transformer (트랜스포머에 의한 수중 음향 트랜스듀서의 송수신 특성의 변화)

  • 조치영;이정민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.493-499
    • /
    • 1997
  • In this study, the changes in transmitting and receiving characteristics, especially resonance frequencies, of the underwater acoustic planar array transducer by the transformers used in the analog weighting circuit are investigated. Electrical equivalent circuit analysis shows that an ideal transformer does not change the resonance frequency of the transmitting mode, but the resonance frequency which gives the maximum receiving sensitivity can be designed by adjusting the magnitude of reactance of transformer.

  • PDF

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

Design of Dimmable electric ballast for the Ceramic metal halide lamp (Ceramic 메탈 헬라이드 램프용 Dimming 전자식 안정기 개발)

  • Lim, Ki-Seung;Choe, Hyeon-Hui;Sin, Dong-Seok;Park, Chong-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1947-1953
    • /
    • 2009
  • Metal halide (MH) lamps have been largely used due to high luminous efficiency, good color rendering, and long life. Since the metal halide lamps have problems of high ignition voltage and acoustic resonance. Thus, the design of ballast is very difficult for engineers. This paper proposes prototype of electric ballast in order to solve above two problems. The proposed electric ballast is consisted of EMI filter, full wave rectifier circuit, active PFC, DBI(Dual Buck Inverter), dimming circuit and ignitor circuit. The DBI supplies both rectangular voltage and current to the lamp. As the result of the experiment, the acoustic resonance was eliminated and the ignitor circuit was designed to generate high ignition voltage than 5kV. It makes the dimming circuit possible to control the lamp power in range between 230W and 350W.

Construction and Circuital Characteristics of Simple Synthetic Test Facility (간이 합성시험설비의 구성 및 회로특성)

  • Lee, J.H.;Park, K.Y.;Chang, K.C.;Shin, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.168-170
    • /
    • 1995
  • This paper proposes the circuit of the simple synthetic testing facility using LC resonance circuit. The analyzed results of the circuit which can be useful for the design stage of the testing facility are also shown. EMTP has been used to analyze the circuit. Two cases of short-circuit test results obtained from the simple synthetic testing facility in KERI are shown with the waveforms of current and voltage. The results also indicate that the simple synthetic testing facility using LC resonance circuit can be easily designed and used very usefully for the research and development for the switchgears.

  • PDF