• 제목/요약/키워드: resolved acceleration control

검색결과 11건 처리시간 0.032초

Heading Control of a Turret Moored Offshore Structure Using Resolved Motion and Acceleration Control

  • Kim, Young-Shik;Sung, Hong-Gun;Kim, Jin-Ha
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.16-24
    • /
    • 2018
  • This paper addresses the heading control of an offshore floating storage and regasification unit (FSRU) using a resolved motion and acceleration control (RMAC) algorithm. A turret moored vessel tends to have the slewing motion. This slewing motion may cause a considerable decrease in working time in loading and unloading operation because the sloshing in the LNG containment tank might happen and/or the collision between FSRU and LNGC may take place. In order to deal with the downtime problem due to this slewing motion, a heading control system for the turret moored FSRU is developed, and a series of model tests with azimuth thrusters on the FSRU is conducted. A Kalman filter is applied to estimate the low-frequency motion of the vessel. The RMAC algorithm is employed as a primary heading control method and modified I-controller is introduced to reduce the steady-state errors of the heading of the FSRU.

다중 로보트 시스템의 위치, 운동야기힘, 내부힘의 강건 독립 제어기 (robust independant controller for position, motion-inducing force, internal force of multi-robot system))

  • 김종수;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.539-542
    • /
    • 1996
  • The forces exerted on an object by the end-effectors of multi-manipulators are decomposed into the motion-inducing force and the internal force. Motion-inducing force effects the motion of an object and internal force can't effect it. The motion of an object can't track exactly the desired motion because of internal force component, therefore internal force component must be considered. In this paper using the resolved acceleration control method and the fact that internal force lies in the null space of jacobian matrix, we construct independently the position, motion-inducing force and internal force controller. Secondly we construct the robust controller to preserve the robustness with respect to the uncertainty of manipulator parameters.

  • PDF

RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어 (Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi)

  • 김영식;이지홍;김진하;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어 (Position/Force Control of Robotic Manipulator with Fuzzy Compensation)

  • 심귀보
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF

PD-최적 제어를 이용한 로봇 매니퓰레이터의 FORCE CONTROL (Force Control with the PD - Optimal Control of a Robot Manipulator)

  • 조병찬;정용철;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.990-993
    • /
    • 1988
  • RMFC (Resolved Motion Force Control) is the method to control the Cartesian force and position using FCC (Force Convergent Control) instead of the complicated dynamic equations of the manipulator. The gain parameters of the controller are adjusted through many trial and errors. In this paper PD-optimal control method is introduced to give optimal gain parameters which minimize the difference between actural acceleration and desired acceleration. To show the validitiesn of the proposed method computer simulations are performed for the two-link manipulator.

  • PDF

Force control of robot manipulator using fuzzy concept

  • Sim, Kwee-Bo;Xu, Jian-Xin;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.907-912
    • /
    • 1990
  • An approach to robot force control, which allows force manipulations to be realized without overshot and overdamping while in the presence of unknown environment, is given in this paper. The main idea is to use dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resolved acceleration control method, dynamic compensation and PID control based on known robot dynamics, kinematics and estimated environment compliance is introduced. To avoid overshoot the whole control system is constructed overdamped. In the second stage, the unknown environment stiffness is estimated by using fuzzy reasoning, where the fuzzy estimation rules are obtained priori as the expression of the relationship between environment stiffness and system response. Based on simulation result, comparisons between cases with or without fuzzy identifications are given, which illustrate the improvement achieved.

  • PDF

Internal force-based coordinated motion control of dual redundant manipulator

  • Kim, Hyunsoo;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.237-240
    • /
    • 1996
  • Internal Force based control of dual redundant manipulator is proposed. One is resolved acceleration type control in the decoupled joint space which includes null motion space and the other is in the impedance control fashion in which the desired impedances are decoupled in three subspace, internal motion controlled space, orthogonal to that space, and the null motion controlled space. The internal force is formulated with its basis set meaningful. The object dynamics is also briefly evolved beforehand.

  • PDF

복합형 이동로봇의 동력학적 모델링 및 제어 (Dynamic Modeling and Control of a Hybrid Locomotion Vehicle)

  • 김형대;권대갑
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1447-1454
    • /
    • 1991
  • 본 로봇은 wheeled type과 legged type의 장점을 함께 가지고 있으므로 주행 속도가 빠르며 환경적응력이 좋다. 기존 로봇과 비교할때 Y.Icihkawa등이 개발한 HLV와 가장 유사하지만 모터 3개로 6개의 바퀴-다리 유닛을 구동하므로 모터15개로 5개의 바퀴-다리유닛을 구동하는 Ichikawa HLV와 동력전달구조에서 많이 상이하다. 뿐만아니라 본 로봇은 3개의 모터만 사용했기 때문에 주행제어가 훨씬 간단하고 제작 비가 저렴하며 장애물 및 계단승강시 걸음새가 훨씬 간단하다.(Ichikawa HLV 경우 뒷 쪽 2개의 다리를 동시에 들 수 없기 때문에 계단 승강시 몸체 회전을 적절하게 섞어야 한다.)

다중 로보트의 위치, 운동야기힘과 내부힘의 강건 독립 제어 (Robust independent control for position motion-inducing force, and internal force of multi-robot)

  • 김종수;박세승;박종국
    • 전자공학회논문지B
    • /
    • 제33B권11호
    • /
    • pp.11-21
    • /
    • 1996
  • Robot manipulators constituing multi-robot system must exert the desired motion force on an object to preserve tghe fine motion of it. The forces exerte on an object by the end-effectors of multi-inducing force and the internal force. Here, motion-inducing force effects the motion of an object, but internal force as lies in the null space of an object coordinate can't effect it. The motion of an object can't track exactly the desired motion by the effect of an object, but internal force as lies in the null space of the effect of internal force component, therefore internal force component must be considered. In this paper, first, under assumption that we can estimate exactly the parameter of dynamics, we constitute paper, first, under assumption that we can estimate exactly the parameter of dynamics, we constitute the controller concerning internal force. And we obtain the internal force as projecting force sensor readings onto the space spanned by null basis set of jacobian matrix. Using the resolved acceleration control method and the fact that internal force lies in the null space of jacobian matrix, we construct the robust control law to preserve the robustness with respect to the uncertainty of mainpulator parameters.

  • PDF

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF