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Abstracts Internal Force based control of dual redundant manipulator is proposed. One is resolved acceleration type

control in the decoupled joint space which includes null motion space and the other is in the impedance control fashion in
which the desired impedances are decoupled in three subspace, internal motion controlled space, orthogonal to that space,
and the null motion controlled space. The internal force is formulated with its basis set meaningful. The object dynamics

is also briefly evolved beforehand.
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1. INTRODUCTION

In this article the dynamic equation describing two cooper-
ating redundant robot arms which simultaneously working
on the same object is established by considering the whole
system as a closed kinematic chain. The basic objective
of two cooperating robot arms is to design a control sys-
tem which is able to command both arms in such a way
that the two arms operate in kinematically and dynami-
cally coordinated fashion generating required forces for the
manipulation of the object.

The coordination, load distribution between the robot
arms through the dynamic equation, the resultant force gen-
erated by external forces or the environmental constraints
and the adequate control schemes based on internal forces
are considered in the following sections. The internal force
control mechanism keeps the internal forces on the object
being manipulated at a desired value.

Various controllers for cooperating robots have been pro-
posed during recent years. They may be generally classified
as position/force control [Hayati, Uchiyama, and Golden-
berg, etc.] or impedance control [Bonitz, Hsu, Kosuge, and
Cannon, etc.].

In this paper two control schemes is implemented with
the redundant manipulators in the decoupled joint space.
One is resolved acceleration type control in the decoupled
joint space and the other is in the impedance control fash-
ton in which the desired impedances are decoupled in three
subspace, internal motion controlled space, orthogonal to
that space, and the null motion controlled space. In both
case, the null motion is controlled for redundant manipula-
tors for the secondary task, though which is manipulability
maximization here, it could be a collision free motion or
overcoming hardware limitations.
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Figure 1: Coordinate Systems for a Dual Manipulator

2. DYNAMIC MODELING

In dual manipulation system as seen in Fig. 1 where two
robot arms handles an objets with their ends, a closed chain
is formed by two robot arms and the object through the
ground. To describe the dynamic behavior of the whole dy-
namic system, we propose to establish equations of motion
by considering the system as a closed kinematic chain. By
selecting the number of generalized coordinates equal to the
degrees of the freedom of the closed chain dynamic of two
robot arms 1s obtained.
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2.1.  Basic Equations

The dynamic equations for each chain of a dual(multiple)-
chain robot system are:

o= Mq)d +hi(a,q)+ I (@) f . (1
i=12-- N
where
T input joint torque/force vector,
[n x 1},

q.9,9 joint displacement, velocity,
acceleration vectors of joints,
each [n x 1],

M; inertia matrix, [n x N],

h.(q;,q;) vector defining nonlinear torques
including centrifugal, Coriolis,
frictional and gravitational effects,
[n x 1]

JTT(ql) transpose of Jacobian matrix,
fn x mj

n number of degrees of freedom
for each manipulator,
dimension of joint space,

m dimension of task space,

N number of manipulators.

For kinematically redundant manipulator, n > m and
r =n — m is called the degree of redundancy.

These N-dynamic equations are coupled through the
terms, J7 (g,)f;; where all the f; terms constitute the re-
quired contact force and moment components to give the
desired motion specified on the object and the internal force
for object grasping.

If we might determine optimal solutions for the con-
tact force/moment vectors, f;(: = 1,2,---,N), the term
JT(q,)f, in Eq. (1) are fixed and known; then the dynam-
ics of each chain are decoupled with these constrained forces
and moments.

Motion equations of an object manipulated by robot arms
are expressed as follows:

I.o+Q,=WF (2)
where
moEs 0
L)
_ [ —meg
Qo = | &x(Iw) } ;
_ E; 0 E; 0
w - d1>( E3 ng E3
. E3 0 6x6n
} d3>( E3 } € SR !
[ 0 —di3 d;2
d;x = di3 0 —dia | e ®R¥?
L _d'l'l d11 0
F o= [finl fTal - flal]’

(5 .
€ " in general.

In order to simplify the problem, we assume the following
assumptions on the contact condition:
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(i) Each arm holds an object firmly and exerts both force
and moment on the object. That is, a contact point
does not move on the object surface unless the ma-
nipulator parts from the object or slips on the object.

(i1) In palm-type grasping or others, the forces and mo-
ments exerted to the object can be considered to be
applied at a point of action.

Letting L = I.¢+ Q,, for a given motion of the object
we can solve the above equation, L = W F to get F:

F=W"'L+ Fin (3)

where W™ is a generalized inverse of W. The second part
of Eq. (3) corresponds to the internal force. F,,; can be any
vector in the null of W of dimension 6n. Although in some
literatures this force is represented as (Egn, — WTW)¢, it
also can be described by the require force space with the
proper choice of their basis set as will be done in (5).

2.2.  Internal Forces

In general, the solution of Eq. (3) is not determined
uniquely. It depends on how the load is distributed on
among the robot arms. The contact points between the ob-
ject and the manipulators are also carefully determined to
generate arbitrary object motion. Some proposed solutions
are presented in {4] and [3].

The internal force component of the applied force, Fin;,
produces compression or tensile forces in the object. The
interaction force between the object and the manipulator is
expressed as the force projected into the line connecting the
two contact points. :

In addition it is desirable to represent Fi,; by Fi,: =
BV | where V', is the component of F';,: with respect to the
basis set. B. A convenient choice of such basis is suggested

in [3].
For example a planar rigid body is formulated as follows:
Io(.i')+Qo:WFv (4)
Fint = BVI (5)

where

Q, = when gravity is ignored,
1 0 0
w = 0 1 0
asin(f) —acos(d) 1
1 0 0
0 1 0,
—asin(f) acos(8) 1
F - [flr fly N1z f2r f2y n?:]T )
cos(d) —sin(f) O
sin(8) cos{8) 0
B 0 a 1 | o[ B
- —cos(f)  sin(8) 0 T B
—sin{) -—cos(f) O
0 a -1
Vi o= [V V1, "19]’r



In the above equation, V'; consists of a compressing force,
Viz, a shearing force, V7, and bending moment, V4. Note
that B matrix is not unique. Performing elementary column
operation of B can be another choice of B.

2.3. Complete System

The following constraint equation among the velocities of
the manipulator and the object

p=J@)g=Jod. (6)

Desired object motion should be transformed to the manipu-
lator coordinate with above relationship and reparametrized
so that ¢ and ¢ could be represented with respect to the co-
ordinate composed of (p? n7)T which expresses the net
motion and null motion of the manipulator[7).

g = RUJR) 'p+N(ZN)'a (7
§ = RUR)'(p-Ja)+N(ZN) (- Zq) (8)

where R € R™*™ and N € R"*("~™) constitute V =
[RIN] of J = ULV and Z is the null basis matrix of
J or JT.J represented by

Z = [J1_ . (adj(Tm)T| — det (J ) Tnm]. (9)
Differentiating Eq. (6) with respect ot time we get
p=Jop+Jog . (10)

The equation describing complete system is obtained by
combining (1), (3}, (5), (8) and (10):

M{R(JR) ' (Jop + Jodp — Jq) (11)
+N(ZN) (- Zg)} + h

+J"TWH{ Lo+ Q. +JT{BV }.

T =

Note that the null motion of manipulator as well as the
cartesian output motion is depicted as n,n where n = Zgq.

3. COORDINATED CONTROL

3.1.  Control Objective

The control objective of coordinated motion controller for
two robot arms manipulating a rigid object listed as follows

e How to hold an object by robot arms,
e How to control the trajectory of the object, and

e How to control the internal force applied to the object.

3.2. Internal Force and Motion Control in the Decom-
posed Joint Space

Let the desired trajectory of the object be given by ¢, ¢, ¢ €
R®. Null motion is specified so as to maximize the manipu-
lability and the internal force is represented with respect to
the basis set that spans the null space of W. Then the re-
quired joint torque is supplied to the manipulator as shown
below:

J'BVia+Kp(Via— Vi) (12)
+Ky, /(Vld - Vy)dt)

+N{R(JR) ' (J.b, + Ksé + K e

T =

+K; /edt +Jopp— Jq)
+N(ZN) (1iq + Kpuren
+K o uii /én dt — Zq)}

+h + JTW+{ Io(i;d +Q,}

where
e = ¢o,~¢, €,=n4—mn,
g = RZVm, fig =kZVm+kZHm ,
V. = B F...

The desired null motion, ng is generated so as to maximize
the manipulability measure, m as ng = kZVm. The first
component in (12) is the internal force control term, the
second is the force component acting on the manipulators
themselves and the last is the force component acting on
the object, i.e. the actual load carrying force.

Internal force, V] is minimally parametrized such as a nor-
mal force, a shearing force and bending moment in planar
case. The external force, F.,: which is the reaction force
exerted by the object is modeled by the local deformation
of the object due to contact as

Fezt =S Ks“'fféw (13)

where 8z is a deformation normal to the contact surface.

In simulation, a planar 3-DOF manipulator with link
length of 0.3m, 0.25m, and 0.2m and mass of 20K g, 10K g,
and 10Kg is used. All links are assumed as bar-type ones.
The mass of object is 2Kg. The simulation results with
K, = 140, K; = 70, K; = 50, Ky, = 5, Kyp; = 30,
Knwr = 100, Kpuns = 10, and gradient gain, £ = 100
is shown below Fig. 2.

3.3, Impedance Control Fashion

Improving the impedance controller, we can decouple the
desired impedances in the internal force controlled space,
the orthogonal space to the internal force controlled space,
and null motion space:

fra—fr=Mé;+ Brér+ Kre; (14)
fo =Moéo + Boéo + Kreo (15)
fnu[l = Mpuuénu + Brutiénun (16)

where e; = BT(pd‘P)v fo= (BJ_)T.fexu Fnut =0, €0 =
(BT (p, — p) and ényy = gy — 1. Here B> can be any
space in the range space of W. The desired null motion, ng
is generated so as to maximize the manipulability measure,
mas ng = kZVm.

Since internal force is used in the impedance relation-
ship, the object dynamics do not contribute to tracking and
steady-state position errors.

For desired impedances the following control law is used,

M{R(JR)"'B[B"p, (7
+M7 ' (Brér+ Krer — (£1.— 1))
+R(JR) 'B*((B)"p,

+Mg'(Boéo + Koeo))

+N(ZN) ivg + M} Bruiénal}
+h+J7f
The simulation results with M; = 1, By = 200, K; = 150,

Mo = 10, Bo = 160, Ko = 200, Muuu = 1, Bhwn = 100
and gradient gain, « = 100 is shown below Fig. 3.
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(a) Joint Configurations
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Figure 2: RAC-type Controller in the Joint Decom-
posed Space

4. CONCLUSION

To control the object motion and the internal force inter-
acting between manipulator and object two control methods
are proposed in the decomposed joint space. Futhermore the
desired null motion is controlled in accordance with given
secondary task. All control variables representing the out-
put motion, the null motion and the internal force are min-
imally parametrized in their space. The proposed control
scheme was verified via numerical simulations.
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