• Title/Summary/Keyword: resolution-adaptive

Search Result 314, Processing Time 0.023 seconds

A CLINICAL STUDY IN THE PROGNOSIS OF THE TEMPOROMANDIBULAR DISORDER (측두하악장애의 예후에 관한 임상 연구)

  • Choi, Jin-Ho;Kim, Il-Kyu;Oh, Nam-Sik;Kim, Eui-Seong;Oh, Seong-Seob;Lee, Seong-Ho;Yang, Dong-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.5
    • /
    • pp.497-506
    • /
    • 2000
  • This study is comprised of data obtained from the files of 346 patients with temporomandibular disorders. All patients were diagnosed, treated and followed in the Department of Dentistry at the Inha university hospital, Incheon, Korea. The patients had treated with medications, physical therapy, occlusal splint and arthrocentesis. The study data were obtained from the medical records and telephone interviews that were conducted by research assistants. The results were as follows 1. The patient's main complaint was pain(77%), and mouth opening limitation was 17%. 2. An analysis of the medical records of the 346 patients disclosed that 82% were improved and 17% had no improvement when they were dismissed. 1% of the patients had become worse during therapy. 3. A success rate of 82% was achieved when medication assisted physical therapy was included. In the current status at the telephone interview, 270 patients(89%) reported that they were doing well with 56% describing themselves as asymtomatic and 32% experiencing only minor residual or recurrent symptoms. 11% regarded themselves as unimproved and worse. 4. In the current status of the unsuccessfully treated patients by medications and physical therapy, 64% of patients were doing well(3% as asymptomatic and 56% as only minor residual or recurrent symptom). But 36% of patients was reported as unimproved and worse. 5. TMJ has a remarkable adaptive potential and TMJ disorder has a natural history of spontaneous fluctuations and favorable prognosis during the subsequent natural course. 6. In the treatment of the temporomandibular disorders, there is a treatment ladder, starting with the simplest and least expensive treatment, that is ascended until resolution of the patient's symptoms occur. These findings suggest that conservative reversible therapies are both sufficient and appropriate for management of temporomandibular disorder in most patients. Major alterations of mandibular position or dentoalveolar relationships do not appear to be necessary for obtaining either short term or long term success and therefore they can be generally regards as inappropriate treatment for this disorder. The fact that physical therapy is non-invasive and does not appear to be fraught with irreversible changes, makes it a very applicable vehicle in the area of clinical TMJ disorder management.

  • PDF

Moving Image Compression with Splitting Sub-blocks for Frame Difference Based on 3D-DCT (3D-DCT 기반 프레임 차분의 부블록 분할 동영상 압축)

  • Choi, Jae-Yoon;Park, Dong-Chun;Kim, Tae-Hyo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • This paper investigated the sub-region compression effect of the three dimensional DCT(3D-DCT) using the difference component(DC) of inter-frame in images. The proposed algorithm are the method that obtain compression effect to divide the information into subband after 3D-DCT, the data appear the type of cubic block(8${\times}$8${\times}$8) in eight difference components per unit. In the frequence domain that transform the eight differential component frames into eight DCT frames with components of both spatial and temporal frequencies of inter-frame, the image data are divided into frame component(8${\times}$8 block) of time-axis direction into 4${\times}$4 sub block in order to effectively obtain compression data because image components are concentrate in corner region with low-frequency of cubic block. Here, using the weight of sub block, we progressed compression ratio as consider to adaptive sub-region of low frequency part. In simulation, we estimated compression ratio, reconstructed image resolution(PSNR) with the simpler image and the complex image contained the higher frequency component. In the result, we could obtain the high compression effect of 30.36dB(average value in the complex-image) and 34.75dB(average value in the simple-image) in compression range of 0.04~0.05bpp.

  • PDF

Extended Target State Vector Estimation using AKF (적응형 칼만 필터를 이용한 확장 표적의 상태벡터 추정 기법)

  • Cho, Doo-Hyun;Choi, Han-Lim;Lee, Jin-Ik;Jeong, Ki-Hwan;Go, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • This paper proposes a filtering method for effective state vector estimation of highly maneuvering target. It is needed to hit the point called 'sweet spot' to increase the kill probability in missile interception. In paper, a filtering method estimates the length of a moving target tracked by a frequency modulated continuous wave (FMCW) radar. High resolution range profiles (HRRPs) is generated from the radar echo signal and then it's integrated into proposed filtering method. To simulate the radar measurement which is close to real, the study on the properties of scattering point of the missile-like target has been conducted with ISAR image for different angle. Also, it is hard to track the target efficiently with existing Kalman filters which has fixed measurement noise covariance matrix R. Therefore the proposed method continuously updates the covariance matrix R with sensor measurements and tracks the target. Numerical simulations on the proposed method shows reliable results under reasonable assumptions on the missile interception scenario.

A Robust Staff Line Height and Staff Line Space Estimation for the Preprocessing of Music Score Recognition (악보인식 전처리를 위한 강건한 오선 두께와 간격 추정 방법)

  • Na, In-Seop;Kim, Soo-Hyung;Nquyen, Trung Quy
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this paper, we propose a robust pre-processing module for camera-based Optical Music Score Recognition (OMR) on mobile device. The captured images likely suffer for recognition from many distortions such as illumination, blur, low resolution, etc. Especially, the complex background music sheets recognition are difficult. Through any symbol recognition system, the staff line height and staff line space are used many times and have a big impact on recognition module. A robust and accurate staff line height and staff line space are essential. Some staff line height and staff line space are proposed for binary image. But in case of complex background music sheet image, the binarization results from common binarization algorithm are not satisfactory. It can cause incorrect staff line height and staff line space estimation. We propose a robust staff line height and staff line space estimation by using run-length encoding technique on edge image. Proposed method is composed of two steps, first step, we conducted the staff line height and staff line space estimation based on edge image using by Sobel operator on image blocks. Each column of edge image is encoded by run-length encoding algorithm Second step, we detect the staff line using by Stable Path algorithm and removal the staff line using by adaptive Line Track Height algorithm which is to track the staff lines positions. The result has shown that robust and accurate estimation is possible even in complex background cases.

De-interlacing Algorithm based on Motion Compensation Reliability (움직임 보상의 신뢰도에 기반 한 순차주사화 알고리즘)

  • Chang, Joon-Young;Kim, Young-Duk;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.102-111
    • /
    • 2009
  • In this paper, we propose a de-interlacing algorithm that combines a motion compensation (MC) method and the vertical-temporal filter with motion compensation (MC V-T filter) according to motion compensation reliability. The MC method represent one of the best ways of improving the resolution of de-interlaced frames, but it may introduce motion compensation artifacts in regions with incorrect motion information. In these regions, the MC V-T filter that is very robust to motion vector errors can be used to correct motion compensation artifacts. The combination between two methods is controlled by the motion compensation reliability that is measured by analyzing the estimated motion vectors and the results of MC. The motion compensation reliability contains information about motion compensation artifacts of MC results and determines the combination weight according to this information. Therefore, the combination rule of the proposed method is more accurate than those of the conventional methods and it enables the proposed method to provide high quality video sequences without producing any visible artifacts. Experimental results with various test sequences show that the proposed algorithm outperforms conventional algorithms in terms of both visual and numerical criteria.

A Low-Complexity Image Compression Method Which Reduces Memories Used in Multimedia Processor Implementation (멀티미디어 프로세서 구현에 사용되는 메모리를 줄이기 위한 저 복잡도의 영상 압축 알고리즘)

  • Jung Su-Woon;Kim I-Rang;Lee Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • This paper presents an efficient image compression method for memory reduction in multimedia processor which can be simply implemented in hardware and provides high performance. The multimedia processor, which includes processing of high-resolution images and videos, requires large memories: they are external frame memories to store frames and internal line memories for implementing some linear filters. If we can reduce those memories by adopting a simple compression method in multimedia processor, it will strengthen its cost competitiveness. There exist many standards for efficiently compressing images and videos. However, those standards are too complex for our purpose and most of them are 2-D block-based methods, which do not support raster scanned input and output. In this paper, we propose a low-complexity compression method which has good performance, can be implemented with simple hardware logic, and supports raster scan. We have adopted 1${\times}$8 Hadamard transform for simple implementation in hardware and compression efficiency. After analyzing the coefficients, we applied an adaptive thresholding and quantization. We provide some simulation results to analyze its performance and compare with the existing methods. We also provide its hardware implementation results and discuss about cost reduction effects when applied in implementing a multimedia processor.

Robust Orientation Estimation Algorithm of Fingerprint Images (노이즈에 강인한 지문 융선의 방향 추출 알고리즘)

  • Lee, Sang-Hoon;Lee, Chul-Han;Choi, Kyoung-Taek;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • Ridge orientations of fingerprint image are crucial informations in many parts of fingerprint recognition such as enhancement, matching and classification. Therefore it is essential to extract the ridge orientations of image accurately because it directly affects the performance of the system. The two main properties of ridge orientation are 1) global characteristic(gradual change in whole part of fingerprint) and 2) local characteristic(abrupt change around core and delta points). When we only consider the local characteristic, estimated ridge orientations are well around singular points but not robust to noise. When the global characteristic is only considered, to estimate ridge orientation is robust to noise but cannot represent the orientation around singular points. In this paper, we propose a novel method for estimating ridge orientation which represents local characteristic specifically as well as be robust to noise. We reduce the noise caused by scar using iterative outlier rejection. We apply adaptive measurement resolution in each fingerprint area to estimate the ridge orientation around singular points accurately. We evaluate the performance of proposed method using synthetic fingerprint and FVC 2002 DB. We compare the accuracy of ridge orientation. The performance of fingerprint authentication system is evaluated using FVC 2002 DB.

Joint Optimization of the Motion Estimation Module and the Up/Down Scaler in Transcoders television (트랜스코더의 해상도 변환 모듈과 움직임 추정 모듈의 공동 최적화)

  • Han, Jong-Ki;Kwak, Sang-Min;Jun, Dong-San;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-285
    • /
    • 2005
  • A joint design scheme is proposed to optimize the up/down scaler and the motion vector estimation module in the transcoder system. The proposed scheme first optimizes the resolution scaler for a fixed motion vector, and then a new motion vector is estimated for the fixed scaler. These two steps are iteratively repeated until they reach a local optimum solution. In the optimization of the scaler, we derive an adaptive version of a cubic convolution interpolator to enlarge or reduce digital images by arbitrary scaling factors. The adaptation is performed at each macroblock of an image. In order to estimate the optimal motion vector, a temporary motion vector is composed from the given motion vectors. Then the motion vector is refined over a narrow search range. It is well-known that this refinement scheme provides the comparable performance compared to the full search method. Simulation results show that a jointly optimized system based on the proposed algorithms outperforms the conventional systems. We can also see that the algorithms exhibit significant improvement in the minimization of information loss compared with other techniques.

Augmented Multiple Regression Algorithm for Accurate Estimation of Localized Solar Irradiance (국지적 일사량 산출 정확도 향상을 위한 다중회귀 증강 알고리즘)

  • Choi, Ji Nyeong;Lee, Sanghee;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1435-1447
    • /
    • 2020
  • The seasonal variations in weather parameters can significantly affect the atmospheric transmission characteristics. Herein, we propose a novel augmented multiple regression algorithm for the accurate estimation of atmospheric transmittance and solar irradiance over highly localized areas. The algorithm employs 1) adaptive atmospheric model selection using measured meteorological data and 2) multiple linear regression computation augmented with the conventional application of MODerate resolution atmospheric TRANsmission (MODTRAN). In this study, the proposed algorithm was employed to estimate the solar irradiance over Taean coastal area using the 2018 clear days' meteorological data of the area, and the results were compared with the measurement data. The difference between the measured and computed solar irradiance significantly improved from 89.27 ± 48.08σ W/㎡ (with standard MODTRAN) to 21.35 ± 16.54σ W/㎡ (with augmented multiple regression algorithm). The novel method proposed herein can be a useful tool for the accurate estimation of solar irradiance and atmospheric transmission characteristics of highly localized areas with various weather conditions; it can also be used to correct remotely sensed atmospheric data of such areas.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.