• Title/Summary/Keyword: resistive

Search Result 1,187, Processing Time 0.033 seconds

A Study on the Application Analysis of the Resistive type Superconducting Fault Current Limiters using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 저항형 초전도한류기의 계통적용분석 연구)

  • Heo Tae Jeon;Bang Jong Hyun;Bae Hyeong Thaek;Park Min Won;Yu In Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Since the discovery of the high temperature superconductors many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means In limit fault current in power systems. HTS resistive type SFCL is based on the ultra fast transition from the superconducting (non resistive) state to the normal (resistive) state by overstepping the critical current density, In this study, the simulation method of resistive type superconducting fault current limiter using EMTDC is proposed and the developed EMTDC model of SFCL is applied to the modeled power network using the Parameters of real system.

Behavioral Current-Voltage Model with Intermediate States for Unipolar Resistive Memories

  • Kim, Young Su;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.539-545
    • /
    • 2013
  • In this paper, a behavioral current-voltage model with intermediate states is proposed for analog applications of unipolar resistive memories, where intermediate resistance values between SET and RESET state are used to store analog data. In this model, SET and RESET behaviors are unified into one equation by the blending function and the percentage volume fraction of each region is modeled by the Johnson-Mehl-Avrami (JMA) equation that can describe the time-dependent phase transformation of unipolar memory. The proposed model is verified by the measured results of $TiO_2$ unipolar memory and tested by the SPECTRE circuit simulation with CMOS read and write circuits for unipolar resistive memories. With the proposed model, we also show that the behavioral model that combines the blending equation and JMA kinetics can universally describe not only unipolar memories but also bipolar ones. This universal behavioral model can be useful in practical applications, where various kinds of both unipolar and bipolar memories are being intensively studied, regardless of polarity of resistive memories.

Resistive and Inductive Loading Techniques on Microstrip Antenna for Wideband Application

  • Jeon, Sang-Bong;Ahn, Chang-Hoi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.693-696
    • /
    • 2011
  • In this work, an exponentially tapered microstrip antenna was implemented using a resistive loading technique in order to suppress the internal reflections. The inductive loading was realized by introducing slits on the antenna to improve radiation efficiency. Compared with a resistive-loaded antenna, the proposed antenna had an average improvement of about 6.2% in radiation efficiency within the range of 2-10.5 GHz. In addition, the highest peak of the radiated short pulse from the proposed antenna became 45% greater than that of an antenna with resistive loading only.

Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer (저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성)

  • Kim, Yongwoo;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

Fabrications of Low Conversion Loss and High LO-RF Isolation 94 GHz Resistive Mixer (낮은 변환손실과 높은 LO-RF 격리도 특성을 갖는 94 GHz Resistive Mixer 의 제작)

  • Lee, Bok-Hyung;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.921-924
    • /
    • 2005
  • We report low conversion loss and high LO to RF isolation 94 GHz MMIC resistive mixers based on 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT technology. The fabricated resistive mixers applied a one-stage amplifier on RF port of the mixer. By using the one-stage amplifier, we obtained the decrement of conversion loss and the increment of LO to RF isolation. So, we can obtain higher performances than conventional resistive mixers. The modified mixer shows excellent conversion loss of 6.7 dB at a LO power of 10 dBm. We also observed an extremely high isolation characteristic from the MMICs exhibiting the LO-RF isolation of 21 ${\pm}$ 0.5dB in a frequency range of 93.7${\sim}$ 94.3 GHz. The low conversion loss and high LO-RF isolation characteristics of the MMIC modified resistive mixers are mainly attributed to the performance of the MHEMTs exhibiting a maximum transconductance of 654 mS/mm, a current gain cut-off frequency of 173 GHz and a maximum oscillation frequency of 271 GHz.

  • PDF

A light-adaptive CMOS vision chip for edge detection using saturating resistive network (포화 저항망을 이용한 광적응 윤곽 검출용 시각칩)

  • Kong, Jae-Sung;Suh, Sung-Ho;Kim, Jung-Hwan;Shin, Jang-Kyoo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.430-437
    • /
    • 2005
  • In this paper, we proposed a biologically inspired light-adaptive edge detection circuit based on the human retina. A saturating resistive network was suggested for light adaptation and simulated by using HSPICE. The light adaptation mechanism of the edge detection circuit was quantitatively analyzed by using a simple model of the saturating resistive element. A light-adaptive capability of the edge detection circuit was confirmed by using the one-dimensional array of the 128 pixels with various levels of input light intensity. Experimental data of the saturating resistive element was compared with the simulated results. The entire capability of the edge detection circuit, implemented with the saturating resistive network, was investigated through the two-dimensional array of the $64{\times}64$ pixels

A Development of the High Precise Measuring Device and Methods of Resistive Leakage Current for the Deterioration Diagnosis of ZnO Arrester (산화아연 피뢰기의 열화진단을 위한 저항성누설전류의 고정도 측정기법 및 장치의 개발)

  • Lee, B.H.;Kang, S.M.;Jeon, D.K.;Park, K.Y.;Choi, H.S.;Cho, S.C.;Baek, Y.H.;Lee, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1668-1670
    • /
    • 2003
  • This paper deals with a development of the high precise measuring device of resistive leakage current for the deterioration and diagnosis of ZnO arresters. The resistive leakage current increasing with time leads to a thermally unstable state that may even experience a disaster. So, the resistive leakage current can be used as an indicator to discriminate whether the ZnO arrester blocks is in good state or in bad. The resistive leakage current measuring system with an analysis program operated with micro-processor using the time delay addition method was designed and fabricated. The proposed measuring systems for the resistive leakage current can effectively be used to develop the techniques of forecasting the deterioration of ZnO arresters in electric power systems.⨀ᔌ?؀㔳㤮㈻Ԁ䭃䑎䷗ᜒं6〰Ԁ䭃䑎䴀

  • PDF

Measurement Method of the Resistive Leakage Current for Lightning Arrester Diagnosis

  • Kil, Gyung-Suk;Han, Ju-Seop;Song, Jae-Yong;Seo, Hwang-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.63-66
    • /
    • 2005
  • Several ways for monitoring the soundness of ZnO lightning arresters have been suggested, and all of which are based on the measurement of leakage current since it is well known that the resistive leakage current is a main indicator of arrester deterioration. In this paper, we proposed an algorithm to measure the resistive leakage current, which is quite different from the conventional method that eliminates capacitive current from the total leakage current. The proposed algorithm is based on that the magnitudes of the resistive leakage current are equal at the same applied voltage levels. To confirm the reliability of the algorithm, we fabricated a leakage current detector and designed an analysis program. Experimental results showed that the method does not need a complex circuitry and is useful to analyze the resistive leakage current.

Simultaneous Quench Characteristic of Resistive Superconducting Fault Current Limiting Modules by using BSCCO Tape

  • Yang Seong-Eun;Ahn Min-Cheol;Park Dong-Keun;Youn Il-Goo;Jang Dae-Hee;Ko Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.43-45
    • /
    • 2006
  • Recently, the resistive Fault Current Limiter (SFCL) made with Coated Conductor (CC) has been researched with an advanced capability in CC. Current limiting elements must be connected in series in order to fabricate the resistive SFCL having large capacity. By the way, unless the applied voltage in the SFCL is distributed to the elements when the fault occurred, those elements will be critically damaged. Thus simultaneous quench of the elements is an important factor to design the resistive SFCL. In this paper, simultaneous quench characteristics of current limiting module by using BSCCO 2223 were researched before manufacturing the resistive SFCL by using CC. At the first fault stage, the elements generated the resistance at the same time. However, the unequal voltage is applied to the each element in process of time. The method is suggested to solve the problem of the unequal distribution. These experimental results will play an important part in developing for the resistive SFCL by using CC.

Large-area imaging evolution of micro-scale configuration of conducting filaments in resistive switching materials using a light-emitting diode

  • Lee, Keundong;Tchoe, Youngbin;Yoon, Hosang;Baek, Hyeonjun;Chung, Kunook;Lee, Sangik;Yoon, Chansoo;Park, Bae Ho;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.285-285
    • /
    • 2016
  • Resistive random access memory devices have been widely studied due to their high performance characteristics, such as high scalability, fast switching, and low power consumption. However, fluctuation in operational parameters remains a critical weakness that leads to device failures. Although the random formation and rupture of conducting filaments (CFs) in an oxide matrix during resistive switching processes have been proposed as the origin of such fluctuations, direct observations of the formation and rupture of CFs at the device scale during resistive switching processes have been limited by the lack of real-time large-area imaging methods. Here, a novel imaging method is proposed for monitoring CF formation and rupture across the whole area of a memory cell during resistive switching. A hybrid structure consisting of a resistive random access memory and a light-emitting diode enables real-time monitoring of CF configuration during various resistive switching processes including forming, semi-forming, stable/unstable set/reset switching, and repetitive set switching over 50 cycles.

  • PDF