• Title/Summary/Keyword: resistance induction

Search Result 626, Processing Time 0.028 seconds

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • Park, Hyun-Chul;Lee, Su-Woon;Kim, Yeong-Min;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

The Effect of Sursulf Treating Time and Traveling Speed during Induction Hardening on Hardness and Wear Characteristics of Low Carbon Steel Combined-Heat-Treated (Sursulf 처리후 고주파 표면경화된 저탄소강의 경도 및 마모특성에 미치는 Sursulf 처리시간 및 고주파 경화 이송속도의 영향)

  • No, Y.S.;Kim, Y.H.;Lee, P.H.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • This study has been performed to investigate into some effects of the Sursulf treatment time and the traveling speed of surface hardening treatment on the hardness and the wear characteristics by applying the combined heat treating techniques of Sursulf process followed by induction hardening treatment to mild steel. It has been shown that increasing the Sursulf treatment time increases the case depth, but both hardness and wear resistance are not considerably improved. When the combined heat treating technique of high frequency induction heating after Sursulf treatment is applied, an improvement in case depth as well as wear resistance is obtained. In particular, the hardness in diffusion zone is greatly increased due mainly to the formation of martensite and possibly lower bainite. Iron oxides formed during induction heating and subsequent water spray cooling in the outermost part of compound layer may be considered to cause some increases in hardness and wear resistance.

  • PDF

Analysis on Parameter Detuning of Induction Motor Drives in Constant Torque Region (일정토크영역에서 유도전동기 고정자자속기준제어의 파라미터 비동조 영향 분석)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.81-86
    • /
    • 2012
  • It is well known that the stator-flux-oriented induction motor drives are not dependent on parameter detuning in constant torque region except low speed range. This paper presents parameter detuning effects of stator-flux-oriented induction motor drives in constant torque region. The detuning effects of stator resistance, rotor resistance and rotor leakage inductance are analyzed.

Parameter Measurement and Identification for Induction Motors (유도 전동기의 매개변수 측정 및 동정)

  • 김규식;김춘환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 2001
  • The accurate identification of the motor parameters is crucially important to achieve high dynamic performance of induction motors. In this paper, th motor parameters such as stator(rotor) resistance, stator(rotor) leakage inductance, mutual inductance, and rotor inertia are measured in off-line. Stator(rotor) resistance and stator(rotor) leakage inductance are measured based on the stationary coordinate equations of induction motors. On the other hand, mutual inductance are measured under the scalar control. Finally, the inverse rotor time constant is identified in on-line using an extended kalman filter algorithm. To demonstrate the practical significance of the results, Some experimental results are presented.

  • PDF

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

A Study on Detection of Broken Rotor Bars in Induction Motors Using Current Signature Analysis (전류신호를 이용한 유도전동기의 회전자봉 결함검출에 관한 연구)

  • 신대철;정병훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.287-293
    • /
    • 2002
  • The unexpected failure of the induction motor makes the downtime of production, and the cost of the process cessation enormous. To reduce the downtime and increase the reliability of the motor, the vibration measurements for the fault detection have been used previously. Recently motor current signature analysis(MCSA) has been adapted for the fault detection and diagnosis of the motors. MCSA provides a powerful analysis tool for detecting the presence of mechanical and electrical faults in both the motor and driven equipment. In this paper, the fault severity of the rotor bar has been derived in terms of the resistance change which is calculated from the equivalent circuit model. Results show that the fault of the rotor can be easily detected and the measured value of the resistance change is verified by the detected fault from on-site tests using MCSA for the induction motors in an iron foundry.

The Equivalent Circuit, The Graphically Calculating Method Of The Characteristics, And The Calculating Method By Determination Of Equivalent Circuit Parameters In Single Phase Induction Motor (단순상유도전동기의 등가회로와 도식적 특성산정법 및 정수결정에 의한 특성산정법)

  • Keung Yul Oh
    • 전기의세계
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1973
  • The contriving equivalent circuit of single phase induction motor which does not separate the primary leakage reactance and the secondary leakage reactance by the revolving field theory, and the graphically calculating method of the characteristics with T-type circle diagram of three phase induction motor which does not suppose the primary leakage reactance can be drawn up only by the no load test, the lock test, and measuring the resistance of stator winding are suggested in this paper. The method which can calculate the parameters of the equivalent circuit and the characteristics with no load test, lock test and measuring resistance of stator windings is suggested in this paper. Considered the exciting current in lock test, we could calculate very accurate characteristics of the single phase induction motor.

  • PDF

Loss Modeling in order to Predict the Efficiency Performance of Induction Motor Drive System (유도전동기 드라이브 시스템의 효율성능을 예측하기 위한 손실 모델링)

  • 정동화;박기태;이정철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.56-61
    • /
    • 2000
  • The precise and reliable loss model for induction motor and converter system is very important in order to predict the efficiency performance of variable speed drives. This paper proposes an accurate loss model of induction motor and converter system. The motor losses, such as stator and rotor copper loss, core loss and stray loss, are considered for fundamental and harmonic frequencies. Also considered are the skin effect on rotor resistance, temperature effect on bath stator and rotor resistance, magnetizing inductance saturation, and friction and windage loss. All the above features are incorporated in a synchronous frame dynamic d-q equivalent circuit. The converter system, consisting of a diode rectifier and PWM transistor inverter, is modeled accurately for conduction and switching losses. Validity of the models, in both steady state and transient conditions, is verified by simulations.

  • PDF

Speed-torque Characteristics of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars by the Variation of the Rotor resistance (회전자 저항변화에 따른 고온초전도 단락봉을 사용한 농형유도전동기의 속도-토크 특성)

  • Sim Jung-wook;Lee Kwang-youn;Cha Guee-soo;Lee Ji-kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.33-37
    • /
    • 2004
  • This paper presents the construction and test results of an HTS induction motor. End rings and short bars were made of HTS tapes, To increase the efficiency and starting torque, HTS tapes can be used as the rotor bars. Because large current is induced in the rotor circuit, HTS tapes quench and high starting torque can be obtained. As the speed of rotor builds up. HTS tapes which are used as short bars become superconducting state again. After the HTS tapes recover from quench, resistance of the rotor circuit is nearly zero. In that case, power loss in rotor circuit is eliminated. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity of the conventional motor was 0.75 kW. Performances of the HTS induction motor were compared with those of the conventional motor with same volume and specification. Test result showed that the speeds of the HTS induction motor were the same with synchronous speed up to 2.6 Nm and 1.788 rpm at 9.7 Nm. It guarantees the high efficiency of the HTS motor. Starting torque of the HTS motor was more than twice of the conventional motor.

Adaptive Compensation Technique of Parameter Variation for Quick Torque Response of an Induction Motor Drive (유도전동기의 속응 토크제어를 위한 파라미터 변동의 적응보상기법)

  • 손진근;정을기;김준환;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • In this paper, an adaptive compensation technique for parameter variation is proposed which can perform quick torque response in vector control of an induction motors. To solve the problem of control performance degradation due to parameter variation in an induction motor, a rotor resistance estimation is performed by the model reference adaptive control(MRAC). The algorithm of rotor resistance estimation is composed of the error relationship which is generated between a motor real instantaneous reactive power and an estimated instantaneous reactive power. The advantage of such a real reactive power reference model is independence of the motor parameter variation. The estimation rotor resistance values are applied to the direct vector control system with a flux observer. Finally, the simulations and experiment are presented to validate the rotor resistance estimation algorithm of induction motor.

  • PDF