• Title/Summary/Keyword: resistance gene

Search Result 1,712, Processing Time 0.03 seconds

Antibiotic-Resistance Profiles and the Identification of the Ampicillin-Resistance Gene of Vibrio parahaemolyticus Isolated from Seawater (해수에서 분리한 장염비브리오의 항생제 내성 및 암피실린 내성 유전자의 동정)

  • Lee, Kuen-Woo;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.637-641
    • /
    • 2010
  • The antibiotics-resistance profiles of 28 strains of Vibrio parahaemolyticus isolated from seawater were investigated. All of the strains studied were resistant to ampicillin (100%), but susceptible to 12 other antibiotics. The minimum inhibitory concentration (MIC) of V. parahaemolyticus to ampicillin was as high as $1,024-2,048\;{\mu}g{\cdot}mL^{-1}$. The phenotype of strain 8 changed from ampicillin-resistant to susceptible with an in-frame deletion mutant of VPA0477, a putative ${\beta}$-lactamase gene, and the MIC for ampicillin of the mutant strain was $1{\mu}g{\cdot}mL^{-1}$. In conclusion, our findings suggest that the VPA0477 gene acts as a ${\beta}$-lactamase in ampicillin-resistant V. parahaemolyticus strains.

Gene Mutations of 23S rRNA Associated with Clarithromycin Resistance in Helicobacter pylori Strains Isolated from Korean Patients

  • Kim, Jung-Mogg;Kim, Joo-Sung;Kim, Na-Young;Kim, Yeoung-Jeon;Kim, In-Young;Chee, Young-Joon;Lee, Chul-Hoon;Jung, Hyun-Chae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1584-1589
    • /
    • 2008
  • Although resistance of Helicobacter pylori to clarithromycin is a major cause of failure of eradication therapies, little information is available regarding gene mutations of clarithromycin-resistant primary and secondary H. pylori isolates in Korea. In the present study, we examined gene mutations of H. pylori 238 rRNA responsible for resistance to clarithromycin. DNA sequences of the 238 rRNA gene in 21 primary clarithromycin-resistant and 64 secondary clarithromycin-resistant strains were determined by PCR amplification and nucleotide sequence analyses. Two mutations of the 238 rRNA gene, A2143G and T2182C, were observed in primary clarithromycin-resistant isolates. In secondary isolates, dual mutation of A2143G+T2182C was frequently observed. In addition, A2143G+T2182C+ T2190C, A2143G+T2182C+C2195T, and A2143G+T2182C+A2223G were observed in secondary isolates. Furthermore, macrolide binding was tested on purified ribosomes isolated from T2182C or A2143C mutant strains with $[^{14}C]$erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the mutant strains. These results indicate that secondary isolates show a greater variety of 238 rRNA gene mutation types than primary isolates, and triple mutations of secondary isolates are associated with A2143G+T2182C in H. pylori isolated from Korean patients.

rdxA. Gene is an Unlikely Marker for Metronidazole Resistance in the Asian Helicobacter pylori Isolates

  • Lui, Sook-Yin;Ling, Khoon-Lin;Ho, Bow
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.751-758
    • /
    • 2003
  • Mutations in the rdxA gene had been reported to be associated with metronidazole resistance in Helicobacter pylori. In this study, sensitivity to metronidazole, RAPD profiles, and DNA sequences of the rdxA gene of 32 local H. pylori isolates were analyzed. Of these, 13 were found to be resistant, while 19 were sensitive to metronidazole. Among the 32 isolates, 10 were paired isolates from the antrum and body of the stomach of individual patients. Interestingly, the RAPD profiles of isolates from individual patients were distinctly different from each other, whereas paired isolates from the same patient were identical regardless of their sensitivities to metronidazole. DNA sequences of the rdxA gene of all 32 isolates showed 95% to 97% homology when compared with the HP0954 locus of H. pylori 26695 genome. From the 19 metronidazole-sensitive strains, 10 (with $MIC{\le}0.5\;\mu\textrm{g}/ml$ metronidazole) were selected and induced to become metronidazole resistant by sequentially passaging through serial 2-fold increasing concentrations of metronidazole. Nine of the 10 induced paired isolates showed mutations in the rdxA sequences which resulted in truncated protein or changes in the translated amino acid sequences. However, the changes did not occur at any specific site in the DNA or amino acid sequences of the rdxA gene of all the isolates analyzed. The results show that the rdxA gene cannot be a definitive marker for metronidazole resistance in H. pylori isolates of an Asian population, and that other factors may contribute to resistance to metronidazole.

Identification of Major Blast Resistance Genes in Korean Rice Varieties(Oryza sativa L.) Using Molecular Markers

  • Cho, Young-Chan;Kwon, Soon-Wook;Choi, Im-Soo;Lee, Sang-Kyu;Jeon, Jong-Seong;Oh, Myung-Kyu;Roh, Jae-Hwan;Hwang, Hung-Goo;Yang, Sae-June;Kim, Yeon-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.265-276
    • /
    • 2007
  • The 13 major blast resistance(R) genes against Magnaporthe grisea were screened in a number of Korean rice varieties using molecular markers. Of the 98 rice varieties tested, 28 were found to contain the Pia gene originating from Japanese japonica rice genotypes. The Pib gene from BL1 and BL7 was incorporated into 39 Korean japonica varieties, whereas this same gene from the IRRI-bred indica varieties was detected in all Tongil-type varieties. We also found that 17 of the japonica varieties contained the Pii gene. The Pii gene in Korean rice varieties originates from the Korean japonica variety Nongbaeg, and Japanese japonica varieties Hitomebore, Inabawase, and Todorokiwase. The Pi5 gene, which clusters with Pii on chromosome 9, was identified only in Taebaeg. Thirty-four varieties were found to contain alleles of the resistance gene Pita or Pita-2. The Pita gene in japonica varieties was found to be inherited from the Japanese japonica genotype Shimokita, and the Pita-2 gene was from Fuji280 and Sadominori. Seventeen japonica and one Tongil-type varieties contained the Piz gene, which in the japonica varieties originates from Fukuhikari and 54BC-68. The Piz-t gene contained in three Tongil-type varieties was derived from IRRI-bred indica rice varieties. The Pi9(t) gene locus that is present in Korean japonica and Tongil-type varieties was not inherited from the original Pi9 gene from wild rice Oryza minuta. The Pik-multiple allele genes Pik, Pik-m, and Pik-p were identified in 24 of the varieties tested. In addition, the Pit gene inherited from the indica rice K59 strain was not found in any of the Korean japonica or Tongil-type varieties tested.

  • PDF

Mediation of Rubradirin Resistance by ABC Transporters (RubT1) from Streptomyces achromogenes var. rubradiris NRRL3061

  • Lamichhane, Janardan;Oh, Tae-Jin;Lee, Hei-Chan;Liou, Kwang-Kyoung;Kim, Chun-Gyu;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1928-1934
    • /
    • 2006
  • The rubradirin biosynthetic gene cluster harbors 58 ORFs within a 105.6-kb sequence, which includes all of the genes responsible for the synthesis of rubradirin, as well as the primary genes relevant to regulatory, resistance, and transport functions. This gene cluster also harbors a resistance-mediating ABC transporter, RubT1, which is located at the most upstream position in the cluster. In the present study, RubT1 was expressed heterologously in E. coli, and the resistance affinity of RubT1 was determined by an antibacterial activity test, as well as by HPLC and ESI-MS analyses. Evidence clearly demonstrates that RubTl mediates rubradirin resistance as an ABC transporter.

Resistance to fluoroquinolone of Staphylococcus pseudintermedius isolated from dogs and cats in Daegu (대구지역 개와 고양이에서 분리된 Staphylococcus pseudintermedius의 fluoroquinolone 내성)

  • Cho, Jae-Keun;Kim, Jeong-MI;Kim, Hwan-Deuk;Kim, Kyung-Hee;Yang, Chang-Ryoul
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • The purpose of this study was to investigated the fluoroquinolone (FQ) resistance and presence of gyrA and grlA gene in 87 Staphylococcus pseudintermedius isolates obtained from clinical samples of dogs and cats. Also, the profiles of FQ resistance compared with methicillin resistant S. pseudintermedius (MRSP) isolates. FQ resistance was observed for enrofloxacin (41.4%), ciprofloxacin (39.1%), norfloxacin (36.8%), ofloxacin and levofloxacin (32.2%, respectively), and moxifloxacin (31.0%). Thirty-eight (43.7%) of 87 S. pseudintermedius isolates were resistant to more than one FQ. Twenty-six (64.5%) of 38 FQ resistant isolates were resistant to all the six FQ tested. Of 38 FQ resistant isolates, gyrA gene was detected in all isolates but grlA gene was not found. Moreover, 19 MRSP isolates were resistant to enrofloxacin (63.2%), ciprofloxacin (57.9%), norfloxacin (52.6%), and ofloxacin, levofloxacin and moxifloxacin (47.4%, respectively). FQ resistance were highly prevalence in S. pseudintermedius isolates from dogs and cats. Our results emphasize the prudent use of antimicrobial agents to companion animals is necessary for prevent antimicrobial resistance.

Analysis of Erythromycin Resistance Gene in Pathogenic Bacteria Isolates from Cultured Olive flounder Paralichthys olivaceus in Jeju (제주지역 양식 넙치(Paralichthys olivaceus)에서 분리한 어병세균 내 Erythromycin 내성 유전자 분석)

  • Lee, Da Won;Jun, Lyu Jin;Kim, Seung Min;Jeong, Joon Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.397-403
    • /
    • 2018
  • We determined the resistance rates of pathogenic bacteria isolated from cultured olive flounder Paralichthys olivaceus to erythromycin (Em), antibiotic typically used in aquaculture and analyzed the genotypes of resistant bacteria using polymerase chain reaction (PCR). We isolated and utilized 160 isolates of Streptococcus parauberis, 1 of S. iniae, 66 of Edwardsiella tarda, 56 of Vibrio sp. and 23 of unidentified bacteria from presumed infected olive flounder from Jeju Island from March 2016 to October 2017. Of the 306 isolated strains, Em-resistant strains included 33 of S. parauberis, 39 of E. tarda and 2 of Vibrio sp. We conducted PCR to assess the resistance determination of Em-resistant strains. Five different types of Em-resistance genes were detected in the 74 Em-resistant strains: erm (A), erm (B), erm (C), mef (A) and mef (E); erm (A) and erm (B) were detected in 1 (3%) and 24 (72.7%) S. parauberis isolates, respectively. In E. tarda, erm (B) was detected in five isolates (12.8 %) and no Em-resistance genes were detected in the two Vibrio sp. isolates.

Monitoring antimalarial drug-resistance markers in Somalia

  • Abdifatah Abdullahi Jalei;Kesara Na-Bangchang;Phunuch Muhamad;Wanna Chaijaroenkul
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.78-83
    • /
    • 2023
  • The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.

Enhanced Resistance to Botrytis cinerea Mediated by Transgenic Expression of the Spider Chitinase Gene AvChit in Arabidopsis

  • Hur, Yeon-Jae;Kim, Doh-Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.2
    • /
    • pp.259-264
    • /
    • 2009
  • The AvChit gene encodes for a chitinase from the spider, Araneus ventricosus. This spider, A. ventricosus, is an abundant species in Korea. Arabidopsis thaliana plants were transformed with the AvChit gene using Agrobacterium tumefaciens. Thirteen transgenic lines expressing the AvChit gene were obtained. Functional expression of the AvChit gene in transgenic Arabidopsis was confirmed by Southern, northern and western blot analysis. The AvChit cDNA was expressed as a 61 kDa polypeptide in baculovirus-infected insect Sf9 cells. AvChit protein extracted from transgenic Arabidopsis exhibited high levels of chitinase activity. Phytopathological tests showed that two transgenic Arabidopsis lines expressing the AvChit gene displayed high levels of resistance to gray mold disease (Botrytis cinerea).

Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance (과수화상병 저항성 사과대목의 MR5보유 대목별 비교)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF