• Title/Summary/Keyword: resin composites

Search Result 928, Processing Time 0.034 seconds

A Study on the Impulse Breakdown Characteristics of Epoxy Composites due to Water Absorption Aging (흡수열화에 따른 에폭시 복합체의 임펄스 절연파괴특성에 관한 연구)

  • 이덕진;손인환;신성권;김명호;김경환;홍진웅;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.156-159
    • /
    • 2000
  • In this paper, the physical and electrical properties of epoxy composites are investigated at boiling absorption condition to observe the influences of moisture. Also, in order to improve water resistance of matrix resin, IPN method was introduced and the influence was investigated. In order to analyze the basic physical properties of samples, scanning electron microscopy method was utilized, and impulse voltage dielectric strength was measured. As a result, it was verified that, in case of IPN samples, the ratio of moisture absorption was decreased due to the improvement of adhesion strength, and impulse voltage dielectric strength of SN sample was degraded abruptly as boiling time and filler content were increasing, while IPN samples were slowly degraded due to the improvement of adhesion strength.

  • PDF

Properties of EMNC According to Addition Contents Variation for Nanosilica (2) -For Mechanical, Electrical Properties (나노 실리카 충진함량 변화에 따른 EMNC의 특성 연구 (2) -기계적, 전기적 특성 중심으로-)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.886-894
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy-nanosilica-microsilica mixture composites (ENMC) was synthesized, and mechanical properties such as their tensile and flexural strength, and AC insulation breakdown strength were investigated. Properties of mechanical strength and AC insulation breakdown strength are analyzed as scale and shape parameter with respect to weibull plot. Their tensile and flexural strength, AC insulation breakdown strength were compared original epoxy or EMC to ENMC. The 4 phr nano-silica addition and the 65 wt% micron-silica mixture composite (ENMC) was found to have the highest tensile and flexural strength. In the tensile strength was improved 29%, and flexural strength was improved 60.9% higher than those of the original epoxy. In the insulation breakdown strength, ENMC_4 phr was improved 17% and ENMC_5 phr was improved 15.8% higher than those of the EMC.

Tribological Characteristics of Carbon Fiber Reinforced Plastics by Surface modification (탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구)

  • 전승흥;양준호;오성모;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-36
    • /
    • 2000
  • This investigation has been studied about friction and wear properties which were important problem, when carbon fiber reinforced plastic(CFRP) was used practically. Unidirection carbon fiber reinforced composites was fabricated with epoxy resin matrix and carbon fiber as a reinforced, and its surface was modified by the ion-assisted reaction. And then we tested the their friction and wear properties according to the ion-irradiation. when the amount of ion-irradiation was 1${\times}$10l6$\^$16/ ions/$\textrm{cm}^2$, the friction coefficient values were about 0.1, where as, the friction coefficient values of non-treatment composites were about 0.16. The former was the stablest in wear mode. We know that ion-irradiation was not proportioned to the friction coefficient, so we found the optimal conditions of the friction and wear according to the ion-irradiation.

  • PDF

ENHANCED MICROWAVE ABSORPTION OF CNT COMPOSITES MIXING WITH Fe3O4 AND CARBONYL IRON

  • JUNG HYO PARK;JAEHO CHOI;KISU LEE;JINWOO PARK;JUNG KUN SONG;EUNKYUNG JEON
    • Archives of Metallurgy and Materials
    • /
    • v.63 no.3
    • /
    • pp.1513-1516
    • /
    • 2018
  • We fabricated two different kinds of composite materials for absorbing microwave in a frequency range of 2 to 18 GHz using coaxial airline and thru-reflect-line (TRL) method. The composite materials having carbon nanotube (CNT) with carbonyl iron (CI) or iron oxide (Fe3O4) were fabricated by mixing each components. Magnetic properties were measured by SQUID equipment. Complex permittivity and complex permeability were also obtained by measuring S-parameters of the toroidal specimen dispersing CI/CNT and Fe3O4/CNT into the 50 weight percent (wt%) epoxy resin. The real permittivity was improved by mixing the CNT however, the real permeability was same as pure magnetic powders. The CI/CNT had a maximum value of real permittivity and real permeability, 11 and 1.4 at 10 GHz, respectively. The CNT composites can be adapted to the radar absorbing materials, band width 8-12 GHz.

Effects of Microstructural Arrangement on the Stress and Failure Behavior for Satin Weave. Composites (주자직 복합재료 미세구조의 응력 및 파괴해석)

  • 우경식;서영욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.455-467
    • /
    • 2001
  • In this study, the stacking phase shift effect on the effective property and stress distribution was investigated for 8-harness satin weave textile composites under uni-axial tension. Textile configurations with varied phase shifts were modeled by unit cells and repeating boundary conditions were applied at the outer periodic surfaces. The effective property and stress were calculated by the unit cell analysis using macro-element to reduce the computational resource. It was found that stresses were dependent on the variation of tow arrangement of adjacent layers. The in-phase and the shifted configurations showed large differences in the stress distribution pattern. The stress level was very high in the resin region and the distribution of the maximum stresses was widely scattered.

  • PDF

Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging

  • Jeong, Un Seong;Lee, Yoon Joo;Shin, Dong Geun;Lim, Hyung Mi;Mun, So Youn;Kwon, Woo Teck;Kim, Soo Ryong;Kim, Young Hee;Shim, Kwang Bo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.351-354
    • /
    • 2015
  • In this study, alumina plates 9~25 μm in size were used as thermal fillers, and epoxy resin was used as a polymer matrix. Oriented alumina plate/epoxy composites were prepared using a rolling method. The effect of ordering alumina plates increased with alumina plate size. The thermal conductivity and flexural strength of the composites were investigated. The horizontal thermal conductivity of the oriented composite was significantly higher than the vertical thermal conductivity. The horizontal thermal conductivity of the 75 wt% alumina content was 8.78 W/mk, although the vertical thermal conductivity was 1.04 W/mk. Ordering of the alumina plate using a rolling method significantly improved the thermal conductivity in the horizontal direction. The flexural strengths of the ordered alumina/epoxy composites prepared at different curing temperatures were measured.

A Study on the Friction and Wear Characteristics of Carbon Fiber Reinforced Plastics by Surface Modification (표면개질에 따른 탄소섬유복합재의 마찰마모 특성에 관한 연구)

  • O, Seong-Mo;Lee, Bong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.122-128
    • /
    • 2001
  • The objective of the present study was to investigate the characteristics of the friction and wear according to the amount of ion-irradiation for the carbon fiber reinforced plastic(CFRP). Unidirectional carbon fiber reinforced composites were fabricated with epoxy resin as a matrix and carbon fiber as a reinforcement, and its surface was modified by the ion-assisted reaction. When the amount of ion-irradiation was $1{\times}10^{16}$ ions/$cm^2$, the friction coefficients of composites were about 0.1 and the wear mode was stable, whereas, the friction coefficient of non-treatment composites were about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5{\times}10^{16}$ ions/$cm^2$, the friction coefficients were higher rather than that of $1{\times}10^{16}$ ions/$cm^2$. Consequently, the amount of ion-irradiation was not in proportion to the friction coefficients, and it was conformed that the optimal conditions would exist between broth of them.

  • PDF

Dielectric Properties of Epoxy Composites with Varying Frequency (에폭시 복합체의 주파수 변화에 따른 유전특성)

  • Lee, Ho-Shik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.676-682
    • /
    • 2018
  • In order to study electrical properties of epoxy composites with various frequency. To measure of dielectric characteristics have been performed over a frequency range from 30[Hz] to 3[MHz] and a temperature range of $20[^{\circ}C]$, $100[^{\circ}C]$, $140[^{\circ}C]$. We observed values of dielectric constant and dissipation of the epoxy composites with various frequency. We were observed dielectric loss and dispersion in low frequency region. Also, we observed to decrease of the dielectric constant due to the effects of filler in high temperature region.

MEASUREMENTS OF SHRINKAGE STRESS AND REDUCTION OF INTER-CUSPAL DISTANCE IN MAXILLARY PREMOLARS RESULTING FROM POLYMERIZATION OF COMPOSITES AND COMPOMERS (광중합형 구치부 수복재료의 중합 수축력과 교두 변위의 상관관계)

  • Lee, Soon-Young;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.346-352
    • /
    • 2004
  • The purpose of present study was to evaluate the polymerization shrinkage stress and cuspal deflection in maxillary premolars resulting from polymerization shrinkage of composites and compomers. Composites and compomers which were used in this study were as follows: Dyract AP, Z100, Surefil. Pyramid, Synergy Compact, Heliomolar, Heliomolar HB, and Compoglass F. For measuring of polymerization shrinkage stress, Stress measuring machine (R&B, Daejon, Korea) was used. One-way ANOVA analysis with Duncan's multiple comparison test were used to determine significant differences between the materials. For measuring of cuspal deflection of tooth, MOD cavities were prepared in 10 extracted maxillary premolars. And reduction of intercuspal distance was measured by strain measuring machine (R&B, Daejon, Korea) One-way ANOVA analysis with Turkey test were used to determine significant differences between the materials. Polymerization shrinkage stress is $\mathbb{\ulcorner}$Heliomolar, Z100, Pyramid < Synergy Compact Compoglass F < Dyract AP < Heliomolr HB, surefil$\mathbb{\lrcorner}$ (P < 0.05). And cuspal delfelction is $\mathbb{\ulcorner}$Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil. < Compoglass F < Pyramid, Dyract AP$\mathbb{\lrcorner}$ (P < 0.05). Measurements of ploymerization shrinkage stress and those of cuspal deflection of the teeth was different. There is no correlation between polymerization shrinkage stress and cuspal deflection of the teeth(p > 0.05).

Tribological Characteristics of Surface Modification by Carbon Fiber Reinforced Plastics (탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구)

  • Kim, Jong-Hee;Jeon, Seung-Hong;Lee, Bong-Goo;Oh, Seong-Mo
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The objective of the present study was to investigate the characteristics of the friction and wear according to the amount of ion-irradiation for the carbon fiber reinforced plastic (CFRP). Unidirectional carbon fiber reinforced composites were fabricated with epoxy resin as a matrix and carbon fiber as a reinforcement, and its surface was modified by the ion-assisted reaction. When the amount of ion-irradiation was $1{\times}10^{16}$ $ions/cm^{2}$. the friction coefficients of composites were about 0.1 and the wear mode was stable. whereas, the friction coefficient of non-treatment composites were about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5{\times}10^{16}$ $ions/cm^{2}$, the friction coefficients were higher rather than that of $1{\times}10^{16}$ $ions/cm^{2}$ Consequently. the amount of ion-irradiation was not in proportion to the friction coefficients, and it was conformed that the optimal conditions would exist between both of them.