Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.6.351

Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging  

Jeong, Un Seong (Korea Institute of Ceramic Engineering & Technology)
Lee, Yoon Joo (Korea Institute of Ceramic Engineering & Technology)
Shin, Dong Geun (Korea Institute of Ceramic Engineering & Technology)
Lim, Hyung Mi (Korea Institute of Ceramic Engineering & Technology)
Mun, So Youn (Korea Institute of Ceramic Engineering & Technology)
Kwon, Woo Teck (Korea Institute of Ceramic Engineering & Technology)
Kim, Soo Ryong (Korea Institute of Ceramic Engineering & Technology)
Kim, Young Hee (Korea Institute of Ceramic Engineering & Technology)
Shim, Kwang Bo (Department of Materials Science & Engineering, Hanyang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.6, 2015 , pp. 351-354 More about this Journal
Abstract
In this study, alumina plates 9~25 μm in size were used as thermal fillers, and epoxy resin was used as a polymer matrix. Oriented alumina plate/epoxy composites were prepared using a rolling method. The effect of ordering alumina plates increased with alumina plate size. The thermal conductivity and flexural strength of the composites were investigated. The horizontal thermal conductivity of the oriented composite was significantly higher than the vertical thermal conductivity. The horizontal thermal conductivity of the 75 wt% alumina content was 8.78 W/mk, although the vertical thermal conductivity was 1.04 W/mk. Ordering of the alumina plate using a rolling method significantly improved the thermal conductivity in the horizontal direction. The flexural strengths of the ordered alumina/epoxy composites prepared at different curing temperatures were measured.
Keywords
Alumina-epoxy composite; Ordering; Thermal property;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Podsiadlo, Z. Tang, B. S. Shim, and N. A. Kotov, Nano Lett., 7, 1224 (2007). [DOI: http://dx.doi.org/10.1021/nl0700649]   DOI
2 Z. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, Nat. Mater., 2, 413 (2003). [DOI: http://dx.doi.org/10.1038/nmat906]   DOI
3 N. A. Kotov, I. Dekany, and J. H. Fendler, J. Phys. Chem., 99, 13065 (1995). [DOI: http://dx.doi.org/10.1021/j100035a005]   DOI
4 A. G. Checa, J.H.E. Cartwright, and M. G. Willinger, J. Struct. Bio., 176, 330 (2011). [DOI: http://dx.doi.org/10.1016/j.jsb.2011.09.011]   DOI
5 A. P. Jackson, J.F.V. Vincent, R.M. Turner, Proc. R, Soc, London, B Biol. Sci., 234, 415 (1988). [DOI: http://dx.doi.org/10.1098/rspb.1988.0056]   DOI
6 F. Song, A. K. Soh, and Y. L. Bai, Biomaterials, 24, 3623 (2003). [DOI: http://dx.doi.org/10.1016/S0142-9612(03)00215-1]   DOI
7 C. Ocando, A. Tercjak, and I. Mondragon, Comp. Sci. Tech., 70, 1106 (2010). [DOI: http://dx.doi.org/10.1016/j.compscitech.2010.02.020]   DOI
8 F. Hojo, H. Kagawa, and Y. Takezawa, J. Ceramic. Soci. Japan, 119, 601 (2011). [DOI: http://dx.doi.org/10.2109/jcersj2.119.601]   DOI
9 C. Ocando, A. Tercjak, and I. Mondragon, European Polymer J, 47, 1240 (2011). [DOI: http://dx.doi.org/10.1016/j.eurpolymj.2011.03.008]   DOI
10 M. Kozako, Y. Okazaki, and M. Hikita, IEEE Solid Dielectrics, ICSD, 1 (2010).
11 J. W. Zha, T. X. Zhu, Y. H. Wu, S. J. Wang, R.K.Y. Li, and Z. M. Dang, J. Materials. Chem. C, 3, 7195 (2015). [DOI: http://dx.doi.org/10.1039/C5TC01552A]   DOI
12 J. Y. Sun and B. Bhushan, RSC Advances, 2, 7617 (2012). [DOI: http://dx.doi.org/10.1039/c2ra20218b]   DOI
13 R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, J. Mater. Res., 16, 2485 (2001). [DOI: http://dx.doi.org/10.1557/JMR.2001.0340]   DOI
14 S. Y. Mun, H. I. Lim, and D. J. Lee, Theor. Chim. Acta, 619, 16 (2015). [DOI: http://dx.doi.org/10.1016/j.tca.2015.09.020]   DOI
15 B. Y. Kim, Y. J. Lee, S. R. Kim, D. G. Shin, W. T. Kwon, D. K. Choi, and Y.H. Kim, J. Korean. Ceram. Soc., 52, 248 (2015).   DOI