• Title/Summary/Keyword: residual vibration suppression

Search Result 24, Processing Time 0.025 seconds

Residual Vibration Suppression of a Piezoelectric Beam Using a Self-sensing Technology (자기계측 기능을 이용한 압전 빔의 잔류진동 제어)

  • Nam, Yoon-Su;Jang, Hu-Yeong;Park, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with a problem of vibration suppression of a piezoelectric beam using a self-sensing algorithm. Two methods, which are PPF(positive position feedback) and SRF(strain rate feedback), are considered to suppress a residual vibration of a piezoelectric beam developed during the step positioning of a beam end point. A self-sensing algorithm treated here is basically a strain rate estimator of a beam movement and is to be used for the closed loop control. The efficacy of the proposed idea is evaluated through experiments.

Residual Vibration Suppression of a Beam-Mass-Cart System by Input Reshaping with a Robust Inernal-loop Compensator (강인한 내부 루프 보상기를 입력성형법에 의한 유연보-부하-대차 시스템의 잔류진동 억제)

  • Park, Sangdeok;Kim, Bong-Keun;Chung, Wan-Kyun;Yeom, Yeong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.198-208
    • /
    • 2001
  • In this paper, vibration suppression of an elastic beam fixed on a moving cart and carrying a fixed or moving mass is considered. A modified pulse sequence method with RIC(Robust Internal-loop Compensator) is proposed to suppress the single model residual vibration and to get accurate positioning of the beam-mass-cart system. The performance of the proposed input preshaping method is compared with that of the previous ones through simulations and experiments. Using the proposed method, it is able to suppress the initial vibration of the beam-mass-cart system carrying a concentrated mass. Accurate PTP(point-to-point) positioning of the moving mass without residual vibration is also obtained experimentally by modifying the proposed pulse sequence method. Finally, the proposed input preshaping method is applied successfully to the system to follow square trajectories of the moving mass without residual vibration.

  • PDF

Modeling and Countermeasure for Positioning Stage Base Vibration (위치결정 스테이지 베이스 진동 모델링 및 저감기법 개발)

  • Park, Ah-Yeong;Lim, Jae-Gon;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.476-484
    • /
    • 2010
  • Precise positioning stages are often employed for precise machinery. For the purpose of vibration isolation, these precise positioning stages are mounted on a heavy base structure which is supported by compliant springs. Then the base structure is subjected to residual vibration due to the reactive force and vertical moving load induced by the stage motion. This paper investigates the vibration behavior of a positioning stage base and the associated vibration suppression technique. A dynamic model is developed to investigate the base vibration due to the reactive force and moving load effects by the moving stage. An input shaping technique is also developed to suppress the residual vibrations in base structures. Simulations and experiments show that the developed dynamic model adequately represents the base vibration and that the proposed input shaping technique effectively removes the residual vibrations from the positioning stage base.

A Suppression of Residual Vibration on the Flexible Structures by Input Shaping (입력설계기법에 의한 유연구조물의 잔류진동제어)

  • Park, Myoungho;Han, Myoungseok;Park, Sungjong
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.364-380
    • /
    • 2006
  • This paper presents a procedure for designing command to maneuver flexible structure with very little residual vibration, even in the presence of modeling errors. For the open loop maneuver, the various shaped profiles using multiple step inputs delayed in time are considered for robustness and compared with the responses of rigid body and flexible body in virtue of simulations and experiments. Input shaping generates vibration-reducing shaped commands through convolution of an impulse sequence with the desired command. A flexible model with a cylindrical hub and four symmetric appendages is considered to examine the responses to real plant, and to illustrate the effectiveness of the proposed shapers. The appendages are long and flexible, leading to low frequency vibration under any control action. It is shown by a series of simulation that a properly designed feedback controller with input shaper performs well, as compared with open loop controller with input shaper. The control objective is to achieve a fast settling time of residual vibration to flexible structure and robustness (insensitivity)to plant uncertainty, to eliminate residual vibration.

Robust Motion Controller Design for Flexible XY Positioning Systems (유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계)

  • 김봉근;박상덕;정완균;염영일
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.

Output Feedback LQ control of a Space Robot in Discrete-Time (우주로봇의 이산시간 출력 귀환 LQ 제어)

  • 임승철
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.567-574
    • /
    • 1996
  • This paper concerns an articulated space robot with flexible links. The equations of its motion are derived by means of the Lagrangian mechanics. Assuming that magnitude of elastic motions are relatively small, the perturbation approach is taken to separate the original equations of motion into linear and nonlinear equations. Th effect the desired payload motion, open loop control inputs are first determined based on the nonlinear equations. One the other hand, in order to reduce the positional errors during the maneuver, vibration suppression is actively done with a feedforward control for disturbance cancellation to some extent. Additionally, for performance robustness against residual disturbance, an LQ control modified to have a prescribed degree of stability is applied based on the linear equations. Measurement equations are formulated to be used for the maximum likelihood estimator to reconstruct states from the original robot equations of motion. Finally, numerical simulations show effectiveness of the proposed control design scheme.

  • PDF

Vibration Suppression Control for a Geared Mechanical System;Simulation Study on Vibration Suppression Effects Using a Model-Based Control with a Rotational Speed Sensor

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.694-699
    • /
    • 2005
  • This paper deals with a control technique of eliminating the transient vibration of a geared mechanical system. This technique is based on a model-based control with a rotational speed sensor in order to establish the damping effect at the driven machine part. A rotational speed sensor is installed in a driven gear, namely a bull gear. A control model is composed of a reduced-order mechanical part expressed as a transfer function between the rotational speed of the motor and that of the bull gear. This control model estimates a load speed after the rotational speed of the bull gear is acted on the transfer function. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a dies driving spindle of a form rolling machine. In this paper, the performance of this control method is examined by simulations. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

Dynamic Load Suppression in Active Vibration Control of Rotating Machinery (회전 물체의 동적 하중에 대한 능동 진동 제어)

  • 김주형;김상섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1126-1131
    • /
    • 2001
  • Excessive vibration in rotating machinery is a problem encountered in many different fields, causing such difficulties as fatigue of machinery components and failure of supporting bearings. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuated vibrations. Recently active techniques have been developed to provide vibration control perform beyond that provided by their passive counters. Most often, the focus of active control methods has been to suppress rotating machinery displacements. In cases where vibration results in bearing failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic bearing loads which would be even more harmful to bearings). This paper presents two optimal control methods for attenuating steady state vibrations in rotating machinery. One method minimizes shaft displacements while the other minimizes dynamic bearing reaction forces. The two methods are applied to a model of a typical rotating machinery system and their results are compared. It is found that displacement minimization can increase bearing loads, while bearing load minimization, on the other hand, decreases bearing loads.

  • PDF

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

Active Vibration Control of a Opened Box Structure By a Model Reference Neuro-Controller (모델기반 신경망 제어기를 이용한 열린 박스 구조물의 진동제어)

  • Jang, Seung-Ik;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1602-1607
    • /
    • 2003
  • Vibration causes noise and sometimes makes structure unstable. Especially, due to the efforts of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance can cause vibration and low damping ratio makes residual vibration last long time. This research is concerned with the model reference neuro-controller design for the vibration suppression of smart structures. By using a model reference neurocontroller, which is one of the algorithms of adaptive control, we performed an adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a model reference neuro-controller, was proved in its effectiveness by applying to an opened box structure. The model reference neuro-controller is implemented with DSP, and the real-time adaptive vibration control experiment results confirm that the model reference neuro-controller is reliable.

  • PDF