• Title/Summary/Keyword: residual vibration

Search Result 285, Processing Time 0.035 seconds

Critical-speed Increase of Optical Disk by Applying Residual Stresses (잔류응력 부과에 의한 광디스크의 임계속도 증가)

  • Kim, Nam Woong;Na, Sang Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2092-2099
    • /
    • 2013
  • Through the data transfer race in industry since 1990s, the operational speed of optical disk drive(ODD) becomes commonly over 10,000 rpm. Such high speed operation inevitably causes the vibration, which is also the disturbances in the read-write process of pick-up servo-controller. Generally the vibration disturbance problem can be solved by the vibration isolation using the rubber mount and the increase of robustness of the pick-up servo-controller. Optical disk itself has not been targeted for the vibration reduction, because it is manufactured under the standardized format. In this paper we focused on the increase of critical speed of optical disk, that is, the improvement of dynamic characteristics, with the control of residual stresses which are come from the injection molding process. To do this, first, the residual stresses induced from the injection molding process are calculated using finite element method. The major design parameters of the process conditions are flow rate and melt temperature, which control the residual stresses in optical disk. Second, the critical speed of optical disk is calculated with modal analysis considering residual stress distributions. It was found out that the critical speed can be improved by the control of operational parameters in the injection molding process.

Body Vibration Compensated Laser Doppler Vibrometer using Adaptive Filtering (적응필터링 기법을 사용하여 자체진동을 보상하는 레이저 도플러 진동측정계)

  • 최성욱;조영균;김호성;장태규;강민식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.516-520
    • /
    • 2003
  • A novel dual beam heterodyne Laser Doppler Vibrometer (LDV) in conjunction with FM demodulators, which utilizes a residual beam to eliminate the perturbationdue due to the vibrometer body vibration without any external reference surface, has been developed. Residual laser beam from the beam splitter is used to pick up the vibration of damper, which is mounted in the vibrometer, and combined with reference beam at the photodetector. The output signal of this detector and main signal are processed to extract the object vibration, using a least mean square adaptive algorithm. It is shown experimentally that the body vibration of 1-5 Hz can be effectively removed from the measured signal using DSP technology to extract unperturbed 100 Hz original signal.

Development of negative Input Shaping Technique for MIMO System (다중 입출력 시스템을 위한 음의 입력다듬기 기법의 개발)

  • Yun, Seung-Kook;Chang, Pyung-Hun;Park, Juyi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1045-1052
    • /
    • 2000
  • In this paper, we propose a method to apply the Input Shaping Technique (IST) to multi-input multi-output (MIMO) systems. In MIMO systems, there is a high possibility of multi-mode residual vibration. The IST filter designed for this multi mode may need a longer time to suppress the residual vibration. Previous works prove that we can shorten the time lag by using negative sequence. This negative sequence, however, causes another problem - it requires excessive control input. In this paper, we provide a remedy to reduce the size of control input by limiting the reference input by limiting the reference input and its derivative. The result of simulations and experiments on a 2 link flexible arm confirmed the effectiveness of the proposed method.

  • PDF

A Control Strategy for Systems with Single Flexible Mode to Reduce Residual Vibration (단일 유연 모드를 가지는 시스템의 잔여 진동을 최소화하기 위한 제어 전략)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2007
  • Many manufacturing devices must execute motions as quickly as possible to achieve profitable high-volume production. Most of them have devices having flexibility and a time delay of one sampling is added to the plants when they are controlled by fast discrete controllers, which brings about non-minimum phase zeros. This paper develops a control strategy that combines feedforward and feedback control with command shaping for such devices. First, the feedback controller is designed to increase damping and eliminate steady-state error. Next, the feedforward controller is designed to speed up the transient response. Finally, an appropriate reference profile is generated using command-shaping techniques to ensure fast point-to-point motions with minimum residual vibration. The particular focus of the paper is to understand the interactions between these individual control components. The resulting control strategy is demonstrated on a model of a high-speed semiconductor manufacturing machine.

Experiment of a Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam and Performance Analysis (유연빔의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.634-639
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

  • PDF

A Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam: Experiments and Its Performance Analysis (유연보의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.651-657
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising Possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

Reduction of residual stress for welded joint using vibrational load

  • Aoki, Shigeru;Nishimura, Tadashi;Hiroi, Tetsumaro
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.355-365
    • /
    • 2004
  • A new reduction method of residual stress in welding joint is proposed where welded metals are shaken during welding. By an experiment using a small shaker, it can be shown that tensile residual stress near the bead is significantly reduced. Since tensile residual stress on the surface degrades fatigue strength for cumulative damage, the proposed method is effective to reduction of residual stress of welded joints. The effectiveness of the proposed method is demonstrated by the response analysis using one mass model with nonlinear springs.

ISO/TC/108/SCI 11342(Mechanical vibration - Methods and criteria for the mechanical balancing of flexible rotors (탄성회전체의 기계적 평형잡기 방법과 기준(ISO 11342))

  • 최상규;전오성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.811-818
    • /
    • 2001
  • ISO 11342 classifies flexible rotors in accordance with their balancing requirements and establishes methods of assessment of residual unbalance. This International Standard also shows how criteria for use in the balancing facility may be derived from either vibration limits specified for the assembled and installed machine or unbalance limits specified for the rotor. If such limits are not available, this standard shows how they may be derived from ISO 10816 and ISO 7919 if desired in terms of vibration, or from ISO 1940- 1 if desired in terms of permissible residual balance. This International Standard also presents methods for adapting the criteria of ISO 1940- 1 to flexible rotors.

  • PDF

Precise Control of Inchworm Displacement Using the LQG/LTR Technique (LQG/LTR 기법을 이용한 이송자벌레 변위의 정밀 제어)

  • Jeon, Yoon-Han;Hwang, Yun-Sik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2015
  • In this study, the linear quadratic Guassian loop transfer recovery (LQG/LTR) control technique was combined with an integrator and applied to an inchworm having piezoelectric actuators for precise motion tracking. The piezoelectric actuator showed nonlinear response characteristics, including hysteresis, due to its ferroelectric characteristics and the residual displacement phenomenon. This paper proposes a feedback control scheme using the LQG/LTR controller with an integrator to improve the ability to track the response to complex input signals and to suppress the phenomenon of hysteresis and residual vibration. Experimental results show that the developed feedback control system for an inchworm can track the various motion contours quickly without residual vibration or overshoot.

Depth-dependent evaluation of residual material properties of fire-damaged concrete

  • Kim, Gyu-Jin;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2017
  • In this study, fire-damaged concrete was investigated by a nonlinear resonance vibration (NRV) technique, in order to evaluate its residual material properties. For the experiments, five cubic concrete specimens were prepared and four of them were damaged at different temperatures using a furnace. With a thermal insulator wrapped at the sides of specimen, thermal gradation was applied to the samples. According to the peak temperatures and depths of the samples, nonlinearity parameters were calculated with the NRV technique before the tendency of the parameters was evaluated. In addition, compressive strength and dynamic elastic modulus were measured for each sample and a comparison with the nonlinearity parameter was carried out. Through the experimental results, the possibility of the NRV technique as a method for evaluating residual material properties was evaluated.