• Title/Summary/Keyword: residual bond strength

Search Result 76, Processing Time 0.023 seconds

Corrosion-bond Strength Evaluation in OPC and Slag Concrete using Accelerated Corrosion Test (촉진부식실험을 이용한 OPC 및 슬래그 콘크리트의 부식-부착강도 평가)

  • Sang-Jin Oh;Hyeon-Woo Lee;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Concrete, as a porous construction material, permits chloride penetration from outside, which yields corrosion in embedded steel. In the study, an accelerated corrosion technique (ICM: Impressed current method) was adopted for rapid corrosion formation with 10 Volt of potential, and corrosion amou nt was controlled u p to 10.0 %. Corrosion amou nt had a linear relationship with cumulative corrosion current and increased with a quadratic function of accelerating period due to cracking. Regarding bond strength test, OPC concrete showed rapid drop of bond strength over 3.0 % of corrosion weight ratio, however slag concrete with 30 % replacement ratio showed a level of 51.4~71.6 % of corrosion ratio to OPC concrete with keeping residual bond strength.

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

Fundamental Properties Polymer-Modified Mortars Using Re-dispersible Polymer Powder (재유화형 폴리머를 혼입한 폴리머 시멘트 모르타르의 내화특성)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2019
  • In this study, the fire resistance performance of polymer cement mortars which are used as a representative repair material for section restoration, is evaluated and residual bond strength is measured by considering unity with concrete. According to the evaluation of fire resistance performance of re-emulsification type polymer cement mortars, residual compressive strength was drastically decreased according to heating temperatures with an increase of polymer addition rate, and this seems to be attributable to the application of polymer film. In addition, an explosion phenomenon occurred frequently with an increase of addition rate, so this should be considered when selecting repair materials and processing.

Effects of waste glass aggregate on thermal behavior of fly ash alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Eu, Ha Min;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.115-116
    • /
    • 2022
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in fly ash (FA) based alkali activated mortar (AAm). AAms were heated at elevated temperature of 200℃, 400℃, 600℃, and 800℃ to explore the residual mass, compressive strength, thermal expansion and change in microstructure of matrix. Results showed greater resistance of AAms with increasing GS content to 50% at each temperature. Owing to the melting of GS at 800℃, the greater matrix bond was observed for AAm incorporating 75% and 100% GS as a result, the residual compressive strength was increased.

  • PDF

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.

Shear bond strength and adhesive failure pattern in bracket bonding with plasma arc light (Plasma arc light를 이용한 bracket 부착시의 전단결합강도와 파절양상의 유형)

  • Yoo, Hyung-Seok;Oh, Young-Geun;Lee, Seung-Yeon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.261-270
    • /
    • 2001
  • The purpose of this study was to evaluate the clinical usefulness of plasma arc light which can reduce the curing time dramatically compared by shear bond strengths and failure patterns of the brackets bonded with visible light in direct bracket bonding. Some kinds of brackets were bonded with the Transbond$^{\circledR}$ to the human premolars which were embedded in the resin blocks according to the various conditions. After bonding, the shear bond strength was tested by Instron universal testing machine and in addition , the amount of residual adhesive remaining on the tooth after debonding was measured by the stereoscope and assessed with adhesive remnant index(ARI). The results were as follows : 1. When plasma arc light was used for bonding the brackets, the shear bond strength was clinically sufficient in both metal and ceramic brackets, but resin brackets showed significantly lower bond strength but which was clinically useful. 2. When metal brackets were bonded using visible light, there was no significant difference in shear bond strength due to the light-curing time and the bond strength was clinically sufficient. 3. When the adhesive failure patterns of brackets bonded with plasma arc light were observed by using the adhesive remnant index, the bond failure of the metal and resin bracket occurred more frequently at bracket-adhesive interface but the failure of the ceramic bracket occurred more frequently at enamel-adhesive interface. 4. There was no statistically significant difference of the shear bond strength and adhesive failure pattern between metal bracket bonded for 2 seconds by curing with plasma arc light and 10 seconds by curing with visible light. 6. When metal brackets were bonded using plasma arc light, the shear bond strength decreased as the distance from the light source increased. The above results suggest that plasma arc light can be clinically useful for bonding the brackets without fear of the decrease of the shear bond strength.

  • PDF

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

EFFECT OF CAVITY DISINFECTANT ON THE BOND STRENGTH AND MICROLEAKAGE OF DENTIN BONDING AGENTS (와동 세척제가 상아질 결합제의 결합에 미치는 영향)

  • Song, Seung-Ho;Lee, Ju-Hyun;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.595-603
    • /
    • 2005
  • Incomplete removal of bacteria contaminated dentin or enamel associated with caries is a potential problem in restorative dentistry Secondary or residual caries, pulpal inflammation and hypersensitivity may result from bacteria left after the initial preparation, especially if an adequate seal against microleakage is not obtained. A possible solution to eliminate residual bacteria left in a cavity preparation would be to treat the cavity with cavity disinfectant wash. But a potential problem with using a cavity disinfectant with dentin bonding agents could be their interference with the ability of the resin to bond to the tooth micromechanically. The purpose of this study was to evaluate the effect of 2% chlorhexidine containing cavity disinfectant ($Consepsis^{(R)}$) on shear bond strength and microleakage of dentin bonding agents, $Adper ^{TM}$ $Scotchbond^{TM}$ Multi-Purpose, $Adper^{TM}$ Single Bond and $Adper^{TM}\;Prompt^{TM}\; L-Pop^{TM}$ Sixty and sixty sound human third molar teeth, respectively, were used for shear bond strength and microleakage test. For experimental group, cavity disinfectant was applied before dentin bonding agents, and was not applied for the control group. The result from the this study can be summarized as follows ; 1. Use of 2% chlorhexidine containing cavity disinfectant($Consepsis^{(R)}$) does not significantly affect the shear bond strength of dentin bonding agents. 2. Use of 2% chlorhexidine containing cavity disinfectant($Consepsis^{(R)}$) does not significantly affect the microleakage of dentin bonding agents.

  • PDF

Effect of cover cracking on reliability of corroded reinforced concrete structures

  • Chen, Hua-Peng;Nepal, Jaya
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.511-519
    • /
    • 2017
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.