DOI QR코드

DOI QR Code

Corrosion-bond Strength Evaluation in OPC and Slag Concrete using Accelerated Corrosion Test

촉진부식실험을 이용한 OPC 및 슬래그 콘크리트의 부식-부착강도 평가

  • Sang-Jin Oh (Department of Civil Engineering, Hannam University) ;
  • Hyeon-Woo Lee (Department of Civil Engineering, Hannam University) ;
  • Seung-Jun Kwon (Department of Civil Engineering, Hannam University)
  • 오상진 (한남대학교 건설시스템공학과) ;
  • 이현우 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2023.09.18
  • Accepted : 2023.12.13
  • Published : 2024.03.30

Abstract

Concrete, as a porous construction material, permits chloride penetration from outside, which yields corrosion in embedded steel. In the study, an accelerated corrosion technique (ICM: Impressed current method) was adopted for rapid corrosion formation with 10 Volt of potential, and corrosion amou nt was controlled u p to 10.0 %. Corrosion amou nt had a linear relationship with cumulative corrosion current and increased with a quadratic function of accelerating period due to cracking. Regarding bond strength test, OPC concrete showed rapid drop of bond strength over 3.0 % of corrosion weight ratio, however slag concrete with 30 % replacement ratio showed a level of 51.4~71.6 % of corrosion ratio to OPC concrete with keeping residual bond strength.

다공성인 콘크리트에서는 외부의 수분 및 염화물 유입이 발생하며, 이는 매립된 철근의 부식을 야기한다. 본 연구에서는 촉진부식실험(ICM: Impressed Current Method)를 이용하여 10 V의 전압을 인가하였으며, 이에 따라 10 % 수준까지 부식량을 조절하였다. 부식량은 부식전류량 누계와 선형적인 관계가 도출되었으며, 균열의 영향으로 부식 유도 시간에 따라 2차 함수의 형태로 증가하였다. 부착응력에 대해서는 OPC 콘크리트에 대해서는 부식량 3.0 % 이후 급격한 부착응력의 감소가 발생하였다. 또한 치환률 30 %의 슬래그 콘크리트에서는 일반 콘크리트에 비하여 51.4~71.6 %의 낮은 부식량을 나타내었으며 5일간의 촉진실험에도 일정 수준의 부착강도를 유지하였다.

Keywords

Acknowledgement

본 연구는 (No. NRF-2020R1A2C2009462)의 지원으로 수행되었으며 저자는 이에 감사드립니다.

References

  1. ACI 440.1 R-06 (2006). Guide for the Design and Construction of Structural Concrete Reinforced with FRP bars, ACI Committee 440. 
  2. Ary, C., Buenfeld, N.R., Newmann, J.B. (1990). Factors influencing chloride binding in concrete, Cement and Concrete Research, 20(2), 291-300.  https://doi.org/10.1016/0008-8846(90)90083-A
  3. Baek, S., Xue, W., Feng, M.Q., Kwon, S.J. (2012). Nondestructive corrosion detection in RC through integrated heat induction and IR thermography, Journal of Nondestructive Evaluation, 31, 181-190.  https://doi.org/10.1007/s10921-012-0133-0
  4. Broomfiled, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15. 
  5. Castel, A., Francois, R., Arliguie, G. (1999). Effect of loading on carbonation penetration in reinforced concrete elements, Cement and Concrete Research, 29(4), 561-565.  https://doi.org/10.1016/S0008-8846(99)00017-4
  6. CEN. (2000). Eurocode 1: Basis of Design and Actions on Structures; EN-1991; European Committee for Standardization (Comite Europeen de Normalisation, CEN): Brussels, Belgium. 
  7. Chung, L., Kim, J.H.J., Yi, S.T. (2008). Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars, Cement and Concrete Composites, 30(7), 603-611.  https://doi.org/10.1016/j.cemconcomp.2008.03.006
  8. DSO: Danish Standards Organization (1980). Pullout Test, DS-2082, Copenhagen, 2. 
  9. Jiang, L., Liu, H., Chu, H., Zhu, C., Xiong, C., You, L., Xu, J., Qin, Y. (2014). Influence of compression fatigue on chloride threshold value for the corrosion of steels in simulated concrete pore, Construction and Building Materials, 73, 699-704.  https://doi.org/10.1016/j.conbuildmat.2014.09.111
  10. JSCE. (2002). Concrete Library 109: Proposal of the Format for Durability Database of Concrete; Japan Society of Civil Engineering (JSCE): Tokyo, Japan. 
  11. JSCE. (2007). Standard Specification for Concrete Structures-Design; JSCE Guidelines for Concrete 15; Japan Society of Civil Engineering (JSCE): Tokyo, Japan. 
  12. Kim, S.K., Lee, S.H., Na, Y.J., Kim, J.T. (2013). Conceptual model for LCC-based LCCO2 analysis of apartment buildings, Energy and Buildings, 64, 285-291.  https://doi.org/10.1016/j.enbuild.2013.05.016
  13. Lau, K., Lasa, I., Paredes, M. (2013). Corrosion failure of post-tensioned tendons in presence of deficient grout, NACE CORROSION, NACE-2013-2600. 
  14. Lee, B.Y., Koh, K.T., Ismail, M.A., Ryu, H.S., Kwon, S.J. (2017). Corrosion and strength behaviors in prestressed tendon under various tensile stress and impressed current conditions, Advances in Materials Science and Engineering, 2017, 8575816. 
  15. Lee, H.S., Noguchi, T., Tomosawa, F. (2002). Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion, Cement and Concrete Research, 32(8), 1313-1318. 
  16. Lee, S.K., Zielske, J. (2014). An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds, Federal Highway Administration, Technical Report in FHWA-HRT-14-039. 
  17. Li, F., Yuan, Y. (2013). Effects of corrosion on bond behavior between steel strand and concrete, Construction and Building Materials, 38, 413-422. 
  18. Papadakis, V.G., Vayenas, C.G., Fardis, M.N. (1991a). Fundamental modeling and experimental investigation of concrete carbonation, ACI Materials Journal, 88(4), 363-373. 
  19. Papadakis, V., Vayenas, C., Fardis, M. (1991b). Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, 88(2), 186-196. 
  20. Ryu, H.S., Park, K.T., Yoon, Y.S., Kwon, S.J. (2018). Resistance to chloride attack of FRP hybrid bar after freezing and thawing action, Journal of the Korean Recycled Construction Resources Institute, 6(1), 59-65 [in Korean]. 
  21. Saeki, T. (1991). Mechanism of carbonation and prediction of carbonation process of concrete, Concrete Library International of JSCE, 17, 23-36. 
  22. Song, H.W., Kwon, S.J., Lee, S.W., Byun, K.J. (2003). A study on resistance of chloride ion penetration in ground granulated blast furnace slag concrete, Journal of the Korea Concrete Institute, 15(3), 400-408 [in Korean].  https://doi.org/10.4334/JKCI.2003.15.3.400
  23. Tondolo, F. (2015), Bond behaviour with reinforcement corrosion, Construction and Building Materials, 93, 926-932.  https://doi.org/10.1016/j.conbuildmat.2015.05.067
  24. Yu. B., Liu. J., Chen, Z. (2017). Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity, Construction and Building Materials, 138, 101-113.  https://doi.org/10.1016/j.conbuildmat.2017.01.100