• Title/Summary/Keyword: reproductive tissue

Search Result 357, Processing Time 0.027 seconds

Hormonal regulation of uterine chemokines and immune cells

  • Park, Dong-Wook;Yang, Kwang-Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.179-185
    • /
    • 2011
  • The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity.

Understanding the molecular mechanisms of bisphenol A action in spermatozoa

  • Rahman, Md Saidur;Pang, Myung-Geol
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Bisphenol A (BPA) is an endocrine-disrupting chemical that is capable of interfering with the normal function of the endocrine system in the body. Exposure to this chemical from BPA-containing materials and the environment is associated with deleterious health effects, including male reproductive abnormalities. A search of the literature demonstrated that BPA, as a toxicant, directly affects the cellular oxidative stress response machinery. Because of its hormone-like properties, it can also bind with specific receptors in target cells. Therefore, the tissue-specific effects of BPA mostly depend on its endocrine-disrupting capabilities and the expression of those particular receptors in target cells. Although studies have shown the possible mechanisms of BPA action in various cell types, a clear consensus has yet to be established. In this review, we summarize the mechanisms of BPA action in spermatozoa by compiling existing information in the literature.

Reproductive Cycle of Seabass, Lateolabrax japonicus (농어, Lateolabrax japonicus의 생식주기)

  • Kang, Duck-Young;Han, Hyoung-Kyun;An, Cheul-Min
    • Korean Journal of Ichthyology
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2001
  • Annual reproductive cycle of seabass, Lateolabrax japonicus, was histologically investigated based on samples captured on the coast of the Tongyoung, South Korea. The gonadosomatic index (GSI) of females began to increase in October and reached its maximum in February. The GSI of males reached its maximum in December. The change of GSI and gonadal tissue showed that the annual reproductive cycle was classified into the following successive four stages: (1) the degenerative and resting stage from March to August, (2) the growth stage from September to November, (3) the mature stage from November to December, and (4) the ripe and spawning stage from December to March.

  • PDF

Sexual Maturity and Reproductive Cycle of the Common Squid Todarodes pacificus in the East Sea of Korea (한국 동해 해역에서 채집된 살오징어 (Todarodes pacificus)의 성성숙과 생식주기)

  • Baek, Hea-Ja;Kim, Jae-Won;Cho, Yun-Jung;Kim, Su-Am
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.472-479
    • /
    • 2006
  • The sexual maturity and reproductive cycle of the common squid, Todarodes pacificus captured from the East Sea, Korea, between January 2004 and January 2006, were investigated by documenting changes in the gonadosomatic index (GSI), gonad development, and oocyte size frequency distribution. The GSI of females began to increase in July, reached a maximum in August, and then gradually decreased. The GSI of males increased from July to March. Using gonad histological observations, we identified four oocyte developmental stages. The changes in GSI and gonad tissue resulted in the classification of the annual reproductive cycle into the following four successive stages: immature (April to June), growing (June to July), mature (July to August), and ripe and spawning (August to March). According to the oocyte diameter size frequency distribution in the ovary, this species appeared to have asynchronous oocyte development and one spawning time.

Rhox in mammalian reproduction and development

  • Lee, Sang-Eun;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.3
    • /
    • pp.107-114
    • /
    • 2013
  • Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, ${\alpha}$, ${\beta}$, and ${\gamma}$ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into ${\alpha}$ (Rhox1-4), ${\beta}$ (Rhox5-9), and ${\gamma}$ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.

Two-Pore Domain $K^+$ Channels Expressed in Mammalian Reproductive Cells and Organs (포유동물 생식세포 및 생식기관에서 발현되는 Two-Pore Domain 칼륨 통로)

  • Lee, Hyo-Zhin;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Two-pore domain $K^+(K_{2P})$ channels contribute to setting the resting membrane potential in excitable and nonexcitable cells. However, the cellular or tissue distribution and function of $K_{2P}$ channels expressed in mammalian germ cells and reproductive organs have not yet been reviewed by researchers. In this review, we focus on expression, localization and expected properties of $K_{2P}$ channels in germ cells and reproductive organs. The $K_{2P}$ channels are expressed in human cytotrophoblast cells, myometrium, placental vascular system, uterine smooth muscle, and pregnant term tissue, suggesting that $K_{2P}$ channels might be involved in the processes of pregnance. The $K_{2P}$ channels are also expressed in mouse zygotes, monkey sperm, ovary, testis, germ cells, and embryos of Korean cattle. Interestingly, $K_{2P}$ channels are modulated by changes in temperature and oxygen concentration which play an important role in embryonic development. Also, $K_{2P}$ channels are responsible for $K^+$ efflux during apoptotic volume decreases in mouse zygotes. These expression patterns and properties of the $K_{2P}$ channels in reproductive organs and germ cells are likely to help the understanding of ion channel-related function in reproductive physiology.