DOI QR코드

DOI QR Code

Hormonal regulation of uterine chemokines and immune cells

  • Park, Dong-Wook (Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine) ;
  • Yang, Kwang-Moon (Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine)
  • Received : 2011.12.12
  • Accepted : 2011.12.17
  • Published : 2011.12.31

Abstract

The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity.

Keywords

References

  1. Lessey BA. Assessment of endometrial receptivity. Fertil Steril 2011;96:522-9. https://doi.org/10.1016/j.fertnstert.2011.07.1095
  2. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953;172:603-6. https://doi.org/10.1038/172603a0
  3. Critchley HO, Kelly RW, Brenner RM, Baird DT. The endocrinology of menstruation-a role for the immune system. Clin Endocrinol (Oxf) 2001;55:701-10. https://doi.org/10.1046/j.1365-2265.2001.01432.x
  4. King AE, Critchley HO. Oestrogen and progesterone regulation of inflammatory processes in the human endometrium. J Steroid Biochem Mol Biol 2010;120:116-26. https://doi.org/10.1016/j.jsbmb.2010.01.003
  5. Quayle AJ. The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J Reprod Immunol 2002;57:61-79. https://doi.org/10.1016/S0165-0378(02)00019-0
  6. Robertson SA, Mau VJ, Tremellen KP, Seamark RF. Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice. J Reprod Fertil 1996;107:265-77. https://doi.org/10.1530/jrf.0.1070265
  7. Nocera M, Chu TM. Transforming growth factor beta as an immunosuppressive protein in human seminal plasma. Am J Reprod Immunol 1993;30:1-8. https://doi.org/10.1111/j.1600-0897.1993.tb00594.x
  8. Letterio JJ, Roberts AB. Regulation of immune responses by TGFbeta. Annu Rev Immunol 1998;16:137-61. https://doi.org/10.1146/annurev.immunol.16.1.137
  9. Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 2007;104:3378-83. https://doi.org/10.1073/pnas.0611098104
  10. Robertson SA, Ingman WV, O'Leary S, Sharkey DJ, Tremellen KP. Transforming growth factor beta--a mediator of immune deviation in seminal plasma. J Reprod Immunol 2002;57:109-28. https://doi.org/10.1016/S0165-0378(02)00015-3
  11. Tremellen KP, Valbuena D, Landeras J, Ballesteros A, Martinez J, Mendoza S, et al. The effect of intercourse on pregnancy rates during assisted human reproduction. Hum Reprod 2000;15:2653-8. https://doi.org/10.1093/humrep/15.12.2653
  12. King AE, Critchley HO, Kelly RW. Innate immune defences in the human endometrium. Reprod Biol Endocrinol 2003;1:116. https://doi.org/10.1186/1477-7827-1-116
  13. Zhang Z, Schluesener HJ. Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cell Mol Life Sci 2006;63:2901-7. https://doi.org/10.1007/s00018-006-6189-1
  14. King AE, Horne AW, Hombach-Klonisch S, Mason JI, Critchley HO. Differential expression and regulation of nuclear oligomerization domain proteins NOD1 and NOD2 in human endometrium: a potential role in innate immune protection and menstruation. Mol Hum Reprod 2009;15:311-9. https://doi.org/10.1093/molehr/gap020
  15. Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 2004;1:95-104.
  16. Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011;68:2811-30. https://doi.org/10.1007/s00018-011-0677-7
  17. Dominguez F, Galan A, Martin JJ, Remohi J, Pellicer A, Simon C. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol Hum Reprod 2003;9:189-98. https://doi.org/10.1093/molehr/gag024
  18. Zhang J, Lathbury LJ, Salamonsen LA. Expression of the chemokine eotaxin and its receptor, CCR3, in human endometrium. Biol Reprod 2000;62:404-11. https://doi.org/10.1095/biolreprod62.2.404
  19. DeLoia JA, Stewart-Akers AM, Brekosky J, Kubik C. Stimulation of uterine cell cytokine production by ovarian hormones. Am J Reprod Immunol 2000;44:16-21. https://doi.org/10.1111/j.8755-8920.2000.440103.x
  20. Santoni A, Carlino C, Gismondi A. Uterine NK cell development, migration and function. Reprod Biomed Online 2008;16:202-10. https://doi.org/10.1016/S1472-6483(10)60575-5
  21. Mokhtar NM, Cheng CW, Cook E, Bielby H, Smith SK, Charnock-Jones DS. Progestin regulates chemokine (C-X-C motif) ligand 14 transcript level in human endometrium. Mol Hum Reprod 2009;16:170-7.
  22. Jones RL, Hannan NJ, Kaitu'u TJ, Zhang J, Salamonsen LA. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab 2004;89:6155-67. https://doi.org/10.1210/jc.2004-0507
  23. Hirota Y, Osuga Y, Koga K, Yoshino O, Hirata T, Morimoto C, et al. The expression and possible roles of chemokine CXCL11 and its receptor CXCR3 in the human endometrium. J Immunol 2006;177:8813-21. https://doi.org/10.4049/jimmunol.177.12.8813
  24. Tibbetts TA, Conneely OM, O'Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod 1999;60:1158-65. https://doi.org/10.1095/biolreprod60.5.1158
  25. Dimitriadis E, Robb L, Salamonsen LA. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol Hum Reprod 2002;8:636-43. https://doi.org/10.1093/molehr/8.7.636
  26. Dunn CL, Critchley HO, Kelly RW. IL-15 regulation in human endometrial stromal cells. J Clin Endocrinol Metab 2002;87:1898-901. https://doi.org/10.1210/jc.87.4.1898
  27. Ehring GR, Kerschbaum HH, Eder C, Neben AL, Fanger CM, Khoury RM, et al. A nongenomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes. J Exp Med 1998;188:1593-602. https://doi.org/10.1084/jem.188.9.1593
  28. Arruvito L, Giulianelli S, Flores AC, Paladino N, Barboza M, Lanari C, et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J Immunol 2008;180:5746-53. https://doi.org/10.4049/jimmunol.180.8.5746
  29. Hirano S, Furutama D, Hanafusa T. Physiologically high concentrations of 17beta-estradiol enhance NF-kappaB activity in human T cells. Am J Physiol Regul Integr Comp Physiol 2007;292:R1465-71. https://doi.org/10.1152/ajpregu.00778.2006
  30. King A, Balendran N, Wooding P, Carter NP, Loke YW. CD3- leukocytes present in the human uterus during early placentation: phenotypic and morphologic characterization of the CD56++ population. Dev Immunol 1991;1:169-90. https://doi.org/10.1155/1991/83493
  31. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003;198:1201-12. https://doi.org/10.1084/jem.20030305
  32. Ho HN, Chao KH, Chen CK, Yang YS, Huang SC. Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Hum Immunol 1996;49:130-6.
  33. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 2003;102:1569-77. https://doi.org/10.1182/blood-2003-02-0517
  34. Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 2001;166:6477-82. https://doi.org/10.4049/jimmunol.166.11.6477
  35. Park DW, Lee HJ, Park CW, Hong SR, Kwak-Kim J, Yang KM. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol 2010;63:173-80. https://doi.org/10.1111/j.1600-0897.2009.00777.x
  36. Croy BA, van den Heuvel MJ, Borzychowski AM, Tayade C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 2006;214:161-85. https://doi.org/10.1111/j.1600-065X.2006.00447.x
  37. Male V, Trundley A, Gardner L, Northfield J, Chang C, Apps R, et al. Natural killer cells in human pregnancy. Methods Mol Biol 2010;612:447-63.
  38. Moffett A, Hiby SE. How Does the maternal immune system contribute to the development of pre-eclampsia? Placenta 2007;28 Suppl A:S51-6. https://doi.org/10.1016/j.placenta.2006.11.008
  39. Tabiasco J, Rabot M, Aguerre-Girr M, El Costa H, Berrebi A, Parant O, et al. Human decidual NK cells: unique phenotype and functional properties-a review. Placenta 2006;27 Suppl A:S34-9.
  40. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006;12:1065-74. https://doi.org/10.1038/nm1452
  41. Stelekati E, Orinska Z, Bulfone-Paus S. Mast cells in allergy: innate instructors of adaptive responses. Immunobiology 2007;212:505-19. https://doi.org/10.1016/j.imbio.2007.03.012
  42. Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005;6:135-42. https://doi.org/10.1038/ni1158
  43. Kitamura Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol 1989;7:59-76. https://doi.org/10.1146/annurev.iy.07.040189.000423
  44. Massey WA, Guo CB, Dvorak AM, Hubbard WC, Bhagavan BS, Cohan VL, et al. Human uterine mast cells. Isolation, purification, characterization, ultrastructure, and pharmacology. J Immunol 1991;147:1621-7.
  45. Sivridis E, Giatromanolaki A, Agnantis N, Anastasiadis P. Mast cell distribution and density in the normal uterus-metachromatic staining using lectins. Eur J Obstet Gynecol Reprod Biol 2001;98:109-13. https://doi.org/10.1016/S0301-2115(00)00564-9
  46. Szukiewicz D, Szukiewicz A, Maslinska D, Gujski M, Poppe P, Mazurek-Kantor J. Mast cell number, histamine concentration and placental vascular response to histamine in preeclampsia. Inflamm Res 1999;48 Suppl 1:S39-40. https://doi.org/10.1007/s000110050390
  47. Szewczyk G, Pyzlak M, Smiertka W, Klimkiewicz J, Szukiewicz D. Histamine stimulates alphav-beta3 integrin expression of the human trophoblast through the H(1) receptor. Inflamm Res 2006;55 Suppl 1:S79-80. https://doi.org/10.1007/s00011-005-0052-y
  48. Zaitsu M, Narita S, Lambert KC, Grady JJ, Estes DM, Curran EM, et al. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol 2007;44:1977-85. https://doi.org/10.1016/j.molimm.2006.09.030
  49. Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 1993;151:4562-73.
  50. Aghajanova L. Leukemia inhibitory factor and human embryo implantation. Ann N Y Acad Sci 2004;1034:176-83. https://doi.org/10.1196/annals.1335.020
  51. Piccinni MP, Beloni L, Livi C, Maggi E, Scarselli G, Romagnani S. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 1998;4:1020-4. https://doi.org/10.1038/2006
  52. Sharkey AM, King A, Clark DE, Burrows TD, Jokhi PP, Charnock-Jones DS, et al. Localization of leukemia inhibitory factor and its receptor in human placenta throughout pregnancy. Biol Reprod 1999;60:355-64. https://doi.org/10.1095/biolreprod60.2.355
  53. Huang X, Venet F, Chung CS, Lomas-Neira J, Ayala A. Changes in dendritic cell function in the immune response to sepsis. Cell- & tissue-based therapy. Expert Opin Biol Ther 2007;7:929-38. https://doi.org/10.1517/14712598.7.7.929
  54. Blois SM, Kammerer U, Alba Soto C, Tometten MC, Shaikly V, Barrientos G, et al. Dendritic cells: key to fetal tolerance? Biol Reprod 2007;77:590-8. https://doi.org/10.1095/biolreprod.107.060632
  55. Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol 2009;182:5488-97. https://doi.org/10.4049/jimmunol.0803177
  56. Carbone F, Procaccini C, De Rosa V, Alviggi C, De Placido G, Kramer D, et al. Divergent immunomodulatory effects of recombinant and urinary-derived FSH, LH, and hCG on human CD4+ T cells. J Reprod Immunol 2010;85:172-9. https://doi.org/10.1016/j.jri.2010.02.009

Cited by

  1. Fractalkine (CX3CL1) and Its Receptor CX3CR1 May Contribute to Increased Angiogenesis in Diabetic Placenta vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/437576
  2. Anatomic and Hormonal Changes in the Female Reproductive Tract Immune Environment during the Life Cycle: Implications for HIV/STI Prevention Research vol.71, pp.6, 2011, https://doi.org/10.1111/aji.12247
  3. Differential Migration and Activation Profile of Monocytes after Trophoblast Interaction vol.9, pp.5, 2011, https://doi.org/10.1371/journal.pone.0097147
  4. The production of alpha/beta and gamma/delta double negative (DN) T-cells and their role in the maintenance of pregnancy vol.13, pp.None, 2011, https://doi.org/10.1186/s12958-015-0073-5
  5. Does Pregnancy After a Diagnosis of Melanoma Affect Prognosis? Systematic Review and Meta-analysis vol.41, pp.8, 2011, https://doi.org/10.1097/dss.0000000000000406
  6. Chemokine CCL24 promotes the growth and invasiveness of trophoblasts through ERK1/2 and PI3K signaling pathways in human early pregnancy vol.150, pp.5, 2011, https://doi.org/10.1530/rep-15-0119
  7. Immunogenetic contributions to recurrent pregnancy loss vol.33, pp.7, 2016, https://doi.org/10.1007/s10815-016-0720-6
  8. Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/8689436
  9. 17β-Estradiol induces proliferation of endometrial NK cells (CD56+) in postmenopausal women vol.20, pp.6, 2011, https://doi.org/10.1080/13697137.2017.1377173
  10. High Levels of CXCL8 and Low Levels of CXCL9 and CXCL10 in Women with Maternal RhD Alloimmunization vol.8, pp.None, 2011, https://doi.org/10.3389/fimmu.2017.00700
  11. Decidual-Placental Immune Landscape During Syngeneic Murine Pregnancy vol.9, pp.None, 2011, https://doi.org/10.3389/fimmu.2018.02087
  12. Pharmacological blockage of the CXCR4-CXCL12 axis in endometriosis leads to contrasting effects in proliferation, migration, and invasion† vol.98, pp.1, 2011, https://doi.org/10.1093/biolre/iox152
  13. C‐C motif chemokine ligand 23 abolishes ER stress‐ and LPS‐induced reduction in proliferation of bovine endometrial epithelial cells vol.233, pp.4, 2011, https://doi.org/10.1002/jcp.26210
  14. Opposing roles of inter-α-trypsin inhibitor heavy chain 4 in recurrent pregnancy loss vol.37, pp.None, 2011, https://doi.org/10.1016/j.ebiom.2018.10.029
  15. New models of lipopolysaccharide‐induced implantation loss reveal insights into the inflammatory response vol.81, pp.2, 2011, https://doi.org/10.1111/aji.13082
  16. The proliferative phase endometrium in IVF/ICSI: an in-cycle molecular analysis predictive of the outcome following fresh embryo transfer vol.35, pp.1, 2011, https://doi.org/10.1093/humrep/dez218
  17. Recent Insights on the Maternal Microbiota: Impact on Pregnancy Outcomes vol.11, pp.None, 2011, https://doi.org/10.3389/fimmu.2020.528202
  18. Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells vol.48, pp.2, 2011, https://doi.org/10.5653/cerm.2021.04448
  19. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: a case-control study vol.41, pp.5, 2011, https://doi.org/10.1080/01443615.2020.1798906