• Title/Summary/Keyword: represented matrix

Search Result 404, Processing Time 0.024 seconds

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Design of Buoyancy and Moment Controllers of a Underwater Glider Based on a T-S Fuzzy Model (T-S 퍼지 모델 기반 수중글라이더의 부력 및 모멘트 제어기 설계)

  • Lee, Gyeoung Hak;Kim, Do Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2037-2045
    • /
    • 2016
  • This paper presents a fuzzy-model-based design approach to the buoyancy and moment controls of a class of nonlinear underwater glider. Through the linearization and the sector nonlinearity methodologies, the underwater glider dynamics is represented by a Takagi-Sugeno (T-S) fuzzy model. Sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop system in the format of linear matrix inequality (LMI). Simulation results demonstrate the effectiveness of the proposed buoyancy and moment controllers for the underwater glider.

Audio Source Separation Based on Residual Reprojection

  • Cho, Choongsang;Kim, Je Woo;Lee, Sangkeun
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.780-786
    • /
    • 2015
  • This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.

Design of a Low-Order H Controller Using an Iterative LMI Method (반복 선형행렬부등식을 이용한 저차원 H 제어기 설계)

  • Kim Chun-Kyung;Kim Kook-Hun;Moon Young-Hyun;Kim Seog-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.

Maximum Entropy Power Spectral Estimation of Two-Dimensional Signal (2차원 신호의 최대 정보량을 갖는 전력 스펙트럼 추정)

  • Sho, Sang-Ho;Kim, Chong-Kyo;Lee, Moon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 1985
  • This paper presents the iterative algorithm for obtaining the ME PSE(Maximum Entropy Power Spectral Estimation) of 2-dimensional signals. This problem involves a correction matching power spectral estimate that can be represented as the reciprocal of the spectral of 2-dimensional signals. This requires two matrix inversion every iterations. Thus, we compensate the matrix to be constantly positive definite with relaxational parameters. Using Row/Column decomposition Discrete Fourier Transform, we can decrease a calculation quantity. Using Lincoln data and white noise, this paper examines ME PSE algorithms. Finally, the results output at the graphic display device. The 2-dimensional data have the 3-dimensional axis components, and, this paper develops 3-dimensional graphic output algorithms using 2-dimensional DGL(Device Independent Graphic Library) which is prepared for HP-1000 F-series computer.

  • PDF

Image coding using quad-tree of wavelet coefficients (웨이블릿 계수의 쿼드트리를 이용한 영상 압축)

  • 김성탁;추형석;전희성;이태호;안종구
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • EZW(Embedded coding using Zero-trees of Wavelet coefficients) decreases symbol-position information using zero-trees, but threshold value fall lot raising resolution, then coding cost of significant coefficients is expensive. To avoide this fact, this paper uses quad-tree representing coefficient-position information. a magnitude of significant coefficient is represented on matrix used at EZW. the proposed algorithm is hoped for raising a coding cost.

  • PDF

Effect of Load Characteristics in Small-Signal Stability Analysis in Multimachine Power Systems (다기계통의 미소신호안정도해석시 부하특성의 영향)

  • Kwon, Sae-Hyuk;Rho, Kyu-Min;Jang, Kil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.189-191
    • /
    • 1993
  • A systematic procedure for the elements of system matrix in multimachine systems with loads is suggested for the small-signal stability studies. Synchronous machines are represented by either a two-axis model or classical model. The interrelationship of submatrices of system matrix is investigated. Once elements of one submatrix are determined, they can be used to calculate the elements of the other submatrix. It is illustrated for three machine and nine bus multimachine systems with constant impedance loads, constant MVA load, constant current and power factors.

  • PDF

Decetralized Control of Multiple Satellites Formation Flying Based on the Overlapping Decomposition Technique (중복 분해 기법을 이용한 인공위성 편대 비행의 분산제어)

  • Lee, Ho-Jae;Kim, Do-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1014-1018
    • /
    • 2012
  • This paper presents a decentralized controller design for formation flying of multiple satellites based on the overlapping decomposition technique. Each satellite is assumed to avail only the information of its own and in front of itself, which restricts the structure of a controller gain matrix to an overlapped form. The concerned large-scale system is expanded using the overlapping decomposition technique. Design condition is represented in terms of linear matrix inequalities with small-scale systems in a decentralized form, based on the expanded system. The resulting controller is contracted to the original overlapped form so as to close the original system. A numerical simulation shows the effectiveness of the proposed technique.

Dynamic Characteristics Analysis of a Machine-Tool Spindle System (공작기계 주축계의 진동특성해석에 관한 연구)

  • Kim, Seok-Il;Gwak, Byeong-Man;Lee, Hu-Sang;Jeong, Jae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

Free Vibration Analysis of Simply Supported Beam with Double Cracks (이중크랙을 가진 단순지지 보의 자유진동 해석)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.600-603
    • /
    • 2005
  • In this paper we studied about the effect of the double cracks on the dynamic behavior of a simply supported beam. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The simply supported beam is modeled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting three undamaged beam segments. The influences of the crack depth and position of each crack on the vibration mode and the natural frequencies of a simply supported beam are analytically clarified. The theoretical results are also validated by a comparison with experimental measurements.

  • PDF