• Title/Summary/Keyword: representative analytical model

Search Result 57, Processing Time 0.024 seconds

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

A Channel Flood Routing by the Analytical Diffusion Model (해석적 확산모델을 이용한 하도홍수추적)

  • 유철상;윤용남
    • Water for future
    • /
    • v.22 no.4
    • /
    • pp.453-461
    • /
    • 1989
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1986-1988 flood seasons i the IHP Pyungchang Representative Basin are routed by this model and are compared with those by the kinematic wave model. The results showed that the analytical diffusion model simulates the observed flood events much better than the analytical kinematic wave model. The present model is proven to be an excellent means of taking the backwater effect due to lateral inflow or down river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

Performance Study of Packet Switching Multistage Interconnection Networks

  • Kim, Jung-Sun
    • ETRI Journal
    • /
    • v.16 no.3
    • /
    • pp.27-41
    • /
    • 1994
  • This paper provides a performance study of multistage interconnection networks in packet switching environment. In comparison to earlier work, the model is more extensive - it includes several parameters such as multiple-packet messages, variable buffer size, and wait delay at a source. The model is also uniformly applied to several representative networks and thus provides a basis for fair comparison as well as selection of optimal values for parameters. The complexity of the model required use of simulation. However, a partial analytical model is provided to measure the congestion in a network.

  • PDF

Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 해석적인 해)

  • Yoo, H.;Pak, E.-T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

Seismic Fragility Assessment Method for RC Bridges in Korea using a Representative Bridge (대표 교량을 이용한 국내 철근콘크리트 교량의 지진취약성 분석 방법)

  • An, HyoJoon;Jeong, Seong-Hoon;Shin, Soobong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.417-423
    • /
    • 2019
  • In this investigation, a set of seismic fragility curves for RC bridges in Korea is derived by considering variations of the representative analytical model. The dimensions and specifications of the model are determined, based on statistical analysis of the inventory of RC bridges in Korea. Variations of important modeling parameters such as material properties, size of structural members, and dimension of the bridge are defined based on statistical studies of the bridges. The OpenSees program is utilized for the analysis to represent the inelastic behavior of RC members. A systematic approach is developed to perform a large volume of inelastic dynamic analysis, in which continuous variation of the modeling parameters are programmed to appropriately represent the characteristics of RC bridges in Korea.

Recent Methodology in Ginseng Analysis

  • Baek, Seung-Hoon;Bae, Ok-Nam;Park, Jeong-Hill
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.119-134
    • /
    • 2012
  • As much as the popularity of ginseng in herbal prescriptions or remedies, ginseng has become the focus of research in many scientific fields. Analytical methodologies for ginseng, referred to as ginseng analysis hereafter, have been developed for bioactive component discovery, phytochemical profiling, quality control, and pharmacokinetic studies. This review summarizes the most recent advances in ginseng analysis in the past half-decade including emerging techniques and analytical trends. Ginseng analysis includes all of the leading analytical tools and serves as a representative model for the analytical research of herbal medicines.

Vertical uplift of suspension equipment due to hanger slackening: Experimental and numerical investigation

  • Yang, Zhenyu;He, Chang;Mosalam, Khalid M.;Xie, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.735-745
    • /
    • 2022
  • The suspension thyristor valve can generate tremendous vertical acceleration responses in layers and large tension forces in hangers. A shaking table test of a scaled-down model of thyristor valves suspended on a hall building is performed to qualify the risk of vertical uplift of two representative types of valves, the chain valve and the rigid valve. Besides, an analytical model is established to investigate the source of the slackening of hangers. The test results show that the valves frequently experience a large vertical acceleration response. The soft spring joint can significantly reduce acceleration, but is still unable to prevent vertical uplift of the chain valve. The analytical model shows a stiffer roof and inter-story connection both contribute to a higher risk of vertical uplift for a rigid valve. In addition, the planar eccentricity and short hangers, which result in torsional motion of the valve, increase the possibility of vertical uplift for a chain valve. Therefore, spring joints with additional viscous dampers and symmetric layout in each layer are recommended for the rigid and chain valve, respectively, to prevent the uplift of valves.

Analytical model of transverse pressure loss in a rod array

  • Ricciardi, Guillaume;Peybernes, Jean;Faucher, Vincent
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2714-2719
    • /
    • 2022
  • The present paper proposes some new computational methods and results in the framework of flow computation through congested domains seen as porous media, as it can be found in the core of a Pressurized Water Reactor (PWR). The flow is thus mostly governed by the distribution of pressure losses, both through the porous structures, such as fuel assemblies, and in the thin fluid layers between them. The purpose of the present paper is to consider the question of the interaction of a flow and a rod bundle from an analytical point of view gathering all the contributions through a set of equations as simple and representative as possible. It aims at demonstrating a sound understanding of the relevant phenomena governing the flow establishment in the geometry of interest instead of relying mainly on a posteriori observations obtained both experimentally and numerically. Comparison with two set of experimental results showed good agreement. The model proposed being analytical it appears easily implementable for studies needing an expression of fluid forces in a rod array as for fuel assembly bowing issue. It would be interesting to test the reliability of the model on other geometry with different P/R ratios.

Analytical Simulation of Shake-Table Responses of a 1:5 Scale 10-story Wall-type RC Residential Building Model (1:5 축소 10층 벽식 RC 공동주택 모델의 진동대실험 응답에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.617-627
    • /
    • 2011
  • This paper presents the results of analytical simulation of shake-table responses of a 1:5 scale 10-story reinforcement concrete(RC) residential building model by using the PERFORM-3D program. The following conclusion are drawn based on the observation of correlation between experiment and analysis; (1) The analytical model simulated fairly well the global elastic behavior under the excitations representative of the earthquake with the return period of 50 years. Under the design earthquake(DE) and maximum considered earthquake(MCE), this model shows the nonlinear behavior, but does not properly simulate the maximum responses, and stiffness and strength degradation in experiment. The main reason is considered to be the assumption of elastic slab. (2) Although the analytical model in the elastic behavior closely simulated the global behavior, there were considerable differences in the distribution of resistance from the wall portions. (3) Under the MCE, the shear deformation of wall was relatively well simulated with the flexural deformation being overestimated by 10 times that of experiment. This overestimation is presumed to be partially due to the neglection of coupling beams in modeling.

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.