• Title/Summary/Keyword: repetitive controller

Search Result 110, Processing Time 0.02 seconds

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.

A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method (반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구)

  • Kim, Mincheul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.

Repetitive Control of Track Following Error in a Hard Disk Drive (하드 디스크 드라이브의 반복 추종 오차 제어)

  • Jeon, Doyoung;Jong, Ilyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.131-138
    • /
    • 1996
  • This paper suggests a servo control algorithm to reduce the repeatable tracking error which is not explicitly taken into account in the design of a conventional PID controller of a computer hard disk drive. The robust stability of the repetitive control system with multiplicative modelling error is analyzed, and the controller was implemented using a fixed point DSP(Digital Signal Processor). Experimental results show that the repetitive errors are suppressed effectively by the proposed controller.

  • PDF

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Repetitive Controller Design to Reduce THD of an AC Power Supply (AC 전원장치의 출력 THD저감을 위한 반복제어기 설계)

  • 김병진;최재호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.311-314
    • /
    • 1999
  • This paper presents the design method of a repetitive controller to educe the harmonics in the output voltage waveform of the AC power supply systems. Output voltage error under the nonlinear load like a rectifier is cyclic with the same period to fundamental wave, therefore one can design the repetitive controller calculating cycle by cycle. The controller is verified mathematically and by simulations.

  • PDF

Repetitive control design for an ODD focusing servo system (반복 제어기를 이용한 광디스크 포커스 제어)

  • Lee, Jong-Min;Park, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1101-1106
    • /
    • 2003
  • As the disk in the ODD rotates, disturbances acting on the ODD servo system generally have periodic components. Such disturbances can make the system unstable and make the controller hard to work. The repetitive controller can be the solution of the periodic disturbances by making the periodic control signals. In this paper repetitive controller is proposed that make the control signal follow the periodic disturbances. A low pass filter, which can make the system stable, is proposed by the simple stability conditions. We will show the performance of the repetitive controller in actual commercial system. Simulation and experimental results will be given as the evidences

  • PDF

A Load Compensator Based on One-Cycle Control with Plug-In Repetitive Control

  • Hu, Jian;Sun, Zhaohui;Ma, Hao;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.443-454
    • /
    • 2015
  • This study proposes a novel one-cycle control scheme with a plug-in repetitive controller for load compensator. The novelty of this scheme lies in the combination of high dynamics and the simplicity of a one-cycle controller and good steady-state harmonic suppression ability of the repetitive controller. In addition, the proposed scheme can reduce the effect of the harmonics in phase voltage for the existence of the repetitive controller. Finally, experimental results on a three-phase, four-wire, three-level load compensator are reported to validate the effectiveness of the proposed control scheme.

Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

  • Abusara, Mohammad A.;Sharkh, Suleiman M.;Zanchetta, Pericle
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.518-529
    • /
    • 2015
  • Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.

High-Performance Voltage Controller Design Based on Capacitor Current Control Model for Stand-alone Inverters

  • Byen, Byeng-Joo;Choe, Jung-Muk;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1635-1645
    • /
    • 2015
  • This study proposes high-performance voltage controller design that employs a capacitor current control model for single-phase stand-alone inverters. The single-phase stand-alone inverter is analyzed via modeling, which is then used to design the controller. A design methodology is proposed to maximize the bandwidth of the feedback controller. Subsequently, to compensate for the problems caused by the bandwidth limitations of the controller, an error transfer function that includes the feedback controller is derived, and the stability of the repetitive control scheme is evaluated using the error transfer function. The digital repetitive controller is then implemented. The simulation and experimental results show that the performance of the proposed controller is high in a 1.5 kW single-phase stand-alone inverter prototype.

Multiple-Model Probabilistic Design for Centralized Repetitive Controllers of Multiple Systems (다물체시스템의 중앙집중 연속학습제어 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-105
    • /
    • 2011
  • This paper presents a method to design a centralized repetitive controller that is robust to variations in the multiple system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the centralized repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. Furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the multiple system.