Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.2.443

A Load Compensator Based on One-Cycle Control with Plug-In Repetitive Control  

Hu, Jian (College of Electrical Engineering, Zhejiang University)
Sun, Zhaohui (College of Electrical Engineering, Zhejiang University)
Ma, Hao (College of Electrical Engineering, Zhejiang University)
Chen, Guozhu (College of Electrical Engineering, Zhejiang University)
Publication Information
Journal of Power Electronics / v.15, no.2, 2015 , pp. 443-454 More about this Journal
Abstract
This study proposes a novel one-cycle control scheme with a plug-in repetitive controller for load compensator. The novelty of this scheme lies in the combination of high dynamics and the simplicity of a one-cycle controller and good steady-state harmonic suppression ability of the repetitive controller. In addition, the proposed scheme can reduce the effect of the harmonics in phase voltage for the existence of the repetitive controller. Finally, experimental results on a three-phase, four-wire, three-level load compensator are reported to validate the effectiveness of the proposed control scheme.
Keywords
Harmonic filters; Load compensator; One-cycle control; Repetitive control;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., Vol. 57, No. 10, pp. 3364-3375, Oct. 2010.   DOI   ScienceOn
2 M. Cirrincione, M. Pucci, G. Vitale, and A. Miraoui, “Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3128-3143, Aug. 2009.   DOI   ScienceOn
3 L. He, K. Zhang, J. Xiong, and S. Fan, “A repetitive control scheme for harmonic suppression of circulating current in modular multilevel converters,” IEEE Trans. Ind. Electron., Vol. 30, No. 1, pp. 471-481 , Aug. 2014.
4 A. Garcia-Cerrada, O. Pinzon-Ardila, V. Feliu-Batlle, P. Roncero-Sanchez, and P. Garcia-Gonzalez, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 237-246, Jan. 2007.   DOI   ScienceOn
5 P. Mattavelli and F. P. Marafao, “Repetitive-based control for selective harmonic compensation in active power filters,” IEEE Trans. Ind. Electron., Vol. 51, No. 5, pp. 1018-1024, Oct. 2004.   DOI   ScienceOn
6 K. M. Smedley, L. Zhou, and C. Qiao, “Unified constant-frequency integration control of active power filters steady-state and dynamics,” IEEE Trans. Power Electron., Vol. 16, No. 3, pp. 428-436, May 2001.   DOI   ScienceOn
7 G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 6th ed., Addison-Wesley, chap. 5, 2010.
8 G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 6th ed., Addison-Wesley, chap. 6, 2010.
9 Q. Chongming and K. M. Smedley, “Three-phase bipolar mode active power filters,” IEEE Trans. Ind. Appl., Vol. 38, No. 1, pp. 149-158, Jan./Feb. 2002.   DOI   ScienceOn
10 C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “High performance current controller for selective harmonic compensation in active power filters,” IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1826-1835, Sep. 2007.   DOI   ScienceOn
11 H. Sato, T. Sueno, T. Toyama, M. Mikawa, T. Toda, and S. Matsumoto, “High accuracy magnet power supply for proton synchrotron by repetitive control,” in Proc. PESC, pp. 812-816, 1991.
12 C.S. Lam, M.C. Wong, and Y.D. Han, “Hysteresis current control of hybrid active power filters,” IET Power Electron., Vol. 5, No. 7, pp. 1175-1187, Aug. 2012.   DOI   ScienceOn
13 Q. Chongming and K. M. Smedley, “Unified constant-frequency integration control of three-phase standard bridge boost rectifiers with power factor correction,” IEEE Trans. Ind. Electron., Vol. 50, No. 1, pp. 100-107, Feb. 2003.   DOI   ScienceOn
14 C. Zhong, L. Yingpeng, and C. Miao, “Control and performance of a cascaded shunt active power filter for aircraft electric power system,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3614-3623, Sep. 2012.   DOI   ScienceOn
15 Y. J. He, J. J. Liu, Z. A. Wang, and Y. P. Zou, “A pi control algorithm with zero static misadjustment for tracking the harmonic current of three level APFs,” Journal of Power Electronics, Vol. 14, No. 1, pp. 175-182, Jan. 2014.   DOI   ScienceOn
16 Y. Suresh, A.K. Panda and M. Suresh, “Real-time implementation of adaptive fuzzy hysteresis-band current control technique for shunt active power filter,” IET Power Electron., Vol. 5, No. 7, pp. 1188-1195, Aug. 2012.   DOI   ScienceOn
17 H. Yi, F. Zhuo, Y. Li, Y. J. Zhang, and W. D. Zhan, “Comparison analysis of resonant controllers for current regulation of selective active power filter with mixed current reference,” Journal of Power Electronics, Vol. 13, No. 5, pp. 861-876, Sep. 2013.   DOI   ScienceOn
18 V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I. Valla, “Hybrid active filter for reactive and harmonics compensation in a distribution network,” IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 670-677, Mar. 2009.   DOI   ScienceOn
19 C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “Frequency response analysis of current controllers for selective harmonic compensation in active power filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 337-347, Feb. 2009.   DOI   ScienceOn
20 T. Quoc-Nam and L. Hong-Hee, “An advanced current control strategy for three-phase shunt active power filters,” IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5400-5410, Dec. 2013.   DOI   ScienceOn
21 J. M. Kanieski, R. Cardoso, H. Pinheiro, and H. A. Grundling, “Kalman filter-based control system for power quality conditioning devices,” IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 5214-5227, Nov. 2013.   DOI   ScienceOn
22 R. S. Herrera, P. Salmeron, and K. Hyosung, “Instantaneous reactive power theory applied to active power filter compensation: Different approaches, assessment, and experimental results,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 184-196, Jan. 2008.   DOI   ScienceOn
23 S. Chandrasekaran and K. Ragavan, “Sliding DFT assisted instantaneous symmetrical components method for estimating reference current to active power filter,” in Proc. MWSCAS, pp. 1168-1171, 2012.
24 B. N. Singh, B. Singh, A. Chandra, P. Rastgoufard, and K. Al-Haddad, “An improved control algorithm for active filters,” IEEE Trans. Power Del., Vol. 22, No. 2, pp. 1009-1020, Apr. 2007.   DOI   ScienceOn
25 T. C. Green and J. H. Marks, “Control techniques for active power filters” in Proc. IEE Electric Power Applications, Vol. 152, No. 2, pp. 369-381, 2005.
26 M. Singh, V. Khadkikar, and A. Chandra, “Grid synchronization with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system,” IET Power Electron., Vol. 4, No. 1, pp. 122-130, Jan. 2011.   DOI   ScienceOn
27 E. S. Sreeraj, E. K. Prejith, K. Chatterjee, and S. Bandyopadhyay, “An active harmonic filter based on one-cycle control,” IEEE Trans. Ind. Electron., Vol. 61, No. 8, pp. 3799-3809, Aug. 2014.   DOI   ScienceOn
28 J. Taotao and K. M. Smedley, “Operation of one-cycle controlled threephase active power filter with unbalanced source and load,” IEEE Trans. Power Electron., Vol. 21, No. 5, pp. 1403-1412, Sep. 2006.   DOI   ScienceOn
29 H. Akagi, “Trends in active power line conditioners,” IEEE Trans. Power Electron., Vol. 9, No. 3, pp. 263-268, Aug. 2002.   DOI   ScienceOn
30 E. H. Watanabe, M. Aredes, and H. Akagi, Instantaneous Power Theory and Applications to Power Conditioning, John Wiley & Sons, chap. 2, 2007.
31 H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Trans. Ind. Appl., Vol. IA-20, No. 3, pp. 625-630, May 1984.   DOI   ScienceOn
32 W.-H. Choi, C.-S. Lam, M.-C. Wong, and Y.-D. Han, “Analysis of DC-link voltage controls in three-phase four-wire hybrid active power filters,” IEEE Trans. Power Electron., Vol. 28, No.5, pp. 2180-2191, May 2013.   DOI   ScienceOn