• Title/Summary/Keyword: reperfusion

Search Result 594, Processing Time 0.027 seconds

Amelioration Effects of Irrigation-Aspiration on Renal Ischemia-Reperfusion Injury in Canine Model (개에서 신장의 허혈-재관류 손상에 대한관류-흡인의 감소효과)

  • Lee, Jae-Il;Son, Hwa-Young;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.25 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • Renal ischemia-reperfusion injury is great clinical important because viability of the transplanted organ depends on the tolerance of the graft to ischemia-reperfusion injury, an inevitable processing during surgery. The purpose of this study was to investigate the effects of irrigation-aspiration in ischemia-reperfusion injury model induced by cross-clamping of renal vessels. Blood samples were collected from these dogs for measurement of kidney function and antioxidant enzyme activity, and RI at the intrarenal artery was measured at different time intervals. And the kidneys were taken for histopathologic evaluation at day 14. Kidney function (Cr and BUN) showed a significant increasing in untreated group compared to treated group. Resistive index of intrarenal artery was no significant difference among the groups. Activity of antioxidant enzymes in plasma was significant decrease in untreated group compare to control group while in treated group was no significant difference compared to control group. In histopathologic finding, treated group was showed less damage than that of untreated group. This result suggests that the processing of irrigation-aspiration is useful to reducing ischemia-reperfusion injury.

Bile Duct Ligation and Insulin-like Growth Factor-I on the Ischemia-Reperfusion Injury of the Small Bowel (쥐에서 허혈-재관류 소장 손상에 대한 담관결찰 및 Insulin-like Growth Factor-I의 영향)

  • Cha, Je-Sun;Lee, Myung-Duk
    • Advances in pediatric surgery
    • /
    • v.3 no.2
    • /
    • pp.98-107
    • /
    • 1997
  • To determine whether bile juice exclusion can prevent the mucosal damage, and Insulin-like growth factor-I can promote mucosal regeneration in ischemia-reperfusion injury of the bowel, 39 weanling rats with 10 cm of Thiry-Vella loop were studied. Animal groups were; Control, BL(common bile duct ligation), IGF{insulin-like growth factor-I(IGF-I) infusion} and IGF-BL(combined treatment). IGF-I(1.5 mg/kg/day) was continuously delivered through a subcutaneously implanted miniosmotic pump. After 15 minutes of superior mesenteric artery clamping, a tissue specimen(P) was taken after 30 minutes of reperfusion. Intestinal continuity was restored to allow oral feeding. A specimen of main tract(M) and another of the Thiry-Vella loop(T) were collected for histomorphometry after 48 hours of reperfusion and free feeding. Villus size ratio(VSR), crypt depth(CD), crypt-depth/villus-height ratio(CVR) and injury score(IS) were measured in 15 consecutive villi. The postoperative mortalities of bile duct ligation groups(BL and IGF-BL) were higher than those of other groups. In control group, VSR of M was lower(P<0.05) than P or T, but not in the other groups. VSR of M in control was lower than those in other groups. CD of T in control, IGF and IGF-BL group were higher than those of M. CD of M and T showed gradual increments from control, IGF and IGF-BL group, respectively. CVR of M and T in IGF group were higher than those in control. CVR in IGF-BL group, T was higher than M, and M was higher than P. About IS, M of BL($20.1{\pm}2.5$) and IGF-BL($20.9{\pm}3.3$) groups were significantly lower than that of control($32.4{\pm}2.5$). These results suggest that the exclusion of bile juice reduces the severity of the reperfusion injury of the mucosa, by inability to activate pancreatic enzymes and IGF-I stimulates mucosal regeneration in injured bowel, and the effect is potentiated by bile juice exclusion.

  • PDF

Effect of Allopurinol on Ultrastructural Changes in Ischemia Reperfusion Injury to Skeletal Muscle of Rats After Graded Periods of Complete Ischemia (흰쥐에서 허혈시간에 따라 재관류후 나타나는 근조직의 미세구조 변화에 allopurinol이 미치는 영향)

  • Paik, Doo-Jin;Chun, Jae-Hong
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.51-62
    • /
    • 1995
  • It has been well known that ischemia and reperfusion injury to skeletal muscle following an acute arterial occlusion causes significant morbidity and mortality. The skeletal muscle, which contains high energy phosphate compounds, has ischemic tolerance. During the ischemia, the ATP is catalyzed to hypoxanthine anaerobically and hypoxanthine dehydrogenase is converted to xanthine oxidase. During reperfusion, the hypoxanthine is catalyzed to xanthine by xanthine oxidase under $O_2$, presence and that results in production of cytotoxic oxygen free radicals. These cytotoxic free radicals, $O_2^-,\;H_{2}O_2,\;OH^-$, are toxic and make lesions in skeletal muscle during reperfusion. The authors perform the present study to investigate the effects of allopurinol, the inhibitor of xanthine oxidase, on reperfused ischemic skeletal muscles by observing the ultrastructural changes of the muscle fibers. A total of 48 healthy Sprague-Dawley rats weighing from 200 g to 250 g were used as experimental animals. Under urethane(3.0mg/kg., IP) anesthesia, lower abdominal incision was done and the left common iliac artery were ligated by using vascular clamp for 1, 2 and 6 hours. The left rectus femoris muscles were obtained at 6 hours after the removal of vascular clamp. In the allopurinol pretreated group, 50mg/kg of allopurinol was administered once a day for 2 days and before 2 hours of ischemia. The specimens were sliced into $1mm^3$ and prepared by routine methods for electron microscopic observations. All preparations were stained with uranyl acetate and lead citrate, and then observed with Hitachi -600 transmission electron microscope. The results were as follows: 1. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats, decreased glycogen particles and electron density of mitochondrial matrix and dilated terminal cisternae are seen. In 2 hours ischemia/6 hours repersed rectus femoris muscles of rats, mitochondria with electron lucent matrix, irregularly dilated triad and spheromembranous bodies are observed. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats, irregularly arranged myofibrils, and many spheromembranous bodies, fat droplets and lysosome are seen. 2. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, decreased glycogen particle and dilated cisternae of sarcoplasmic reticulum and triad are observed. In 2 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol decreased electron density of mitochondrial matrix and spheromembranous bodies are seen. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, mitochondria with electron lucent matrix, spheromembranous bodies and dilated cisternae of sarcoplasmic reticulum and terminal cistern are observed. The results suggest that the allopurinol attenuates the damages of the skeletal muscles of rats during ischemia and reperfusion.

  • PDF

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

The Effects of Superior Cervical Sympathetic Ganglion Block on the Acute Phase Injury and Long Term Protection against Focal Cerebral Ischemia/Reperfusion Injury in Rats (백서의 국소 뇌허혈/재관류로 인한 신경손상에서 상경부 교감 신경절 블록의 급성기 및 장기 보호효과)

  • Jeon, Hae Young;Joung, Kyoung Woon;Choi, Jae Moon;Kim, Yoo Kyung;Shin, Jin Woo;Leem, Jeong Gill;Han, Sung Min
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglia (SCG), and these nerves may influence the cerebral blood flow. The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats that were subjected to focal cerebral ischemia/reperfusion injury. Methods: Eighty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of two groups (the ropivacaine group and a control group). In all the animals, brain injury was induced by middle cerebral artery (MCA) reperfusion that followed MCA occlusion for 2 hours. The animals of the ropivacaine group received $30{\mu}l$ of 0.75% ropivacaine, and their SCG. Neurologic score was assessed at 1, 3, 7 and 14 days after brain injury. Brain tissue samples were then collected. The infarct ratio was measured by 2.3.5-triphenyltetrazolium chloride staining. The terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeled (TUNEL) reactive cells and the cells showing caspase-3 activity were counted as markers of apoptosis at the caudoputamen and frontoparietal cortex. Results: The death rate, the neurologic score and the infarction ratio were significantly less in the ropivacaine group 24 hr after ischemia/reperfusion injury. The number of TUNEL positive cells in the ropivacaine group was significantly lower than those values of the control group in the frontoparietal cortex at 3 days after injury, but the caspase-3 activity was higher in the ropivacaine group than that in the control group at 1 day after injury. Conclusions: The study data indicated that a superior cervical sympathetic ganglion block may reduce the neuronal injury caused by focal cerebral ischemia/reperfusion, but it may not prevent the delayed damage.

Initial Experience of ACE68 Reperfusion Catheter in Patients with Acute Ischemic Stroke Related to Internal Carotid Artery Occlusion

  • Jang, Hyoung-Gyu;Park, Jung-Soo;Lee, Jong-Myong;Kwak, Hyo-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.545-550
    • /
    • 2019
  • Objective : Penumbra ACE68 reperfusion catheter is a new large bore aspiration catheter used for reperfusion of large vessel occlusion. The objective of this study was to investigate the efficacy of this catheter in comparison to that of previous Penumbra catheters in patients with acute ischemic stroke related to internal carotid artery (ICA) occlusion. Methods : Data of all eligible patients who received endovascular treatment (EVT) for ICA occlusion using Penumbra aspiration catheters between January 2015 and December 2018 were retrospectively reviewed. After dividing into two groups according to use of penumbra ACE68, baseline characteristics of patients, successful recanalization rate, puncture to recanalization time, and switch to stent base technique rate were assessed. Successful recanalization was defined by a thrombolysis in cerebral infarction (TICI) score ${\geq}2b$ and favorable functional outcome was defined according to modified Rankin scale (score, 0-2). Results : ACE68 reperfusion catheter was used in 29 of 75 eligible patients (39%). The puncture to recanalization time was significantly shorter ($26{\pm}18.2$ minutes vs. $40{\pm}24.9$ minutes, p=0.011) and the rate of switch to stent-based retrieval was significantly lower (3% vs. 20%, p=0.046) in ACE68 catheter group. Moreover, although not statistically significant, the successful recanalization rate was higher (83% vs. 76%, p=0.492) in ACE68 catheter group. Favorable functional outcome was observed in 48% of patients treated with ACE68 reperfusion catheter and in 30% of patients treated using other Penumbra systems (p=0.120). Baseline Alberta Stroke Program Early CT Scores ${\geq}8$ (odds ratio [OR], 9.74; 95% confidence interval [CI], 1.72-54.99; p=0.010) and successful recanalization (OR, 10.20; 95% CI, 1.13-92.46; p=0.039) were independent predictors of favorable outcome. Conclusion : EVT using ACE68 reperfusion catheter can be considered a first-line therapy in patients with acute ICA occlusion as it can achieve rapid recanalization and reduce the frequency of conversion to stent-retrieve therapy.

Ischemia-Reperfusion : Mechanism of Microvascular Dysfunction (허혈-재관류 : 미세혈관 기능 장애의 기전)

  • Park, Jae Hong
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.3
    • /
    • pp.295-301
    • /
    • 2002
  • 미세혈관의 모든 분절(세동맥, 모세혈관, 세정맥)에 있는 내피세포의 기능은 허혈-재관류(ischemia-reperfusion)에 노출시 장애가 발생하게 되는데, 세동맥에서는 혈관확장 능력이 떨어지고, 모세혈관에서는 체액 여과 및 백혈구에 의한 혈관의 막힘(leukocyte plugging)이 증가되며, 세정맥에서는 백혈구-내피세포 접착(leukocyte-endothelial cell adhesion)과 단백의 혈관 외 누출이 증가한다. 활성 산소(reactive oxygen species)와 nitric oxide의 생산의 불균형은 이들 반응을 촉진시키며, 심혈관 질환의 위험 인자인 hypercholesterolemia, 당뇨병, 고혈압 등은 I/R에 대한 미세혈관 반응을 더욱 악화시킨다.

The Effects of Needle Electrode Electrical Stimulation on Cellular Necrosis Blocking the Forebrain after Induction of Ischemia

  • Kim, Sung-Won;Lee, Jung-Sook;Park, Seung-Gyu;Kang, Han-Ju;Kim, Yong-Soo;Yoon, Young-Dae;Yang, Hoe-Song;Lee, Han-Gi;Kim, Sang-Soo
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • This study was performed to investigate the effects of Needle Electrode Electrical Stimulation(NEES) on ischemia-induced cerebrovascular accidents. After obstruction and reperfusion of arteries in white mice, the amounts of necrosis and inflammation related substances Bax, IL-6, Caspase-3, and COX-2 were measured in neurons of the fore-brain. The following results were obtained. This study used 21 male specific pathogen free(SPF) SD rats, 8 weeks of age and approximately 300g in weight. Each exposed artery was completely occluded with non-absorbent suture thread and kept in that state for 5 minutes. The sutures were then removed to allow reperfusion of blood. Test group is control group(common carotid artery occlusion models), a GI(underwent common carotid artery occlusion), and NEES(underwent NEES after artery occlusion). The GI and NEES groups were given 12, 24, or 48 hours of reperfusion before NEES. NEES device(PG6, ITO, Japan, 9V, current, 2Hz) was used to stimulate the bilateral acupoint ST36 of the SD rats for 30 minutes while they were sedated with 3% isoflurane. An immuno-histochemistry test was done on the forebrains of the GI induced rats. Both Bax and Caspase-3 immuno-reactive cells, related to apoptosis, were greater in the GI than the NEES group. Cox-2 and IL-6 immuno-reactive cells, related to inflammation, were greater in the GI and NEES groups than the control group. We can expect that applying NEES after ischemic CVA is effective for preventing brain cells from being destroyed. And we can conclude NEES should be applyed on early stage of ischemic CVA.

  • PDF

Mechanism Study of Cheonmabanhwa-Tang on the Cerebral Ischemia in Rats - Focusing arround Improvement in Changes of Cerebral Hemodynamics - (천마반하탕이 뇌허혈에 미치는 기전 연구)

  • Yang Gi Ho;Lee Geum Soo;Kim Young Kun;Jeong Hyun Woo;Kim Gye Yeop;Jeon Byung Gwan;Lee Won Suk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1404-1409
    • /
    • 2004
  • Cheonmabanhwa-Tang(CBT) has been used in the Oriental Medicine for many centuries as a therapeutic agent for dizziness due to Poong-Dam. This Study was designed to investigate the mechanism of Prescription on cerebral hemodynamics [regional cerebral blood flow(rCBF) and pial arterial diameter(PAD)J in cerebral ischemia rats, The results in cerebral ischemic rats were as follows: Both rCBF and PAD were significantly and stably increased by CBT (10 ㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. Pretreatment with indomethacin(1 ㎎/㎏, i.p.), an inhibitor of cyclooxygenase significantly but unstably increased the CBT-induced increases in PAD as well as rCBF during the period of cerebral reperfusion. Pretreatment with methylene blue(10 (.1.㎍/㎏, i.p.), an inhibitor of guanylate cyclase significantly but unstably increased the CBT-induced increases in PAD as well as rCBF during 150 minutes of cerebral reperfusion, but decreased stably the CBT-induced increases in rCBF and PAD after 180 minutes of cerebral reperfusion. In conclusion, the present authors thought that CBT caused effect on cerebral hemodynamics via mediation of cyclooxygenase.

Effect of Acanthopanacis cortex Water Extract on Renal Function in Ischemia/Reperfusion-lnduced Acute Renal Failure Rats (오가피(五加皮) 물추출물이 허혈-재관류로 유발된 급성 신부전에 미치는 영향)

  • Lee, An-Sook;Kang, Dae-Gil;Kim, Eun-Ju;Yang, Sun-Nye;Uhm, Jae-Yeon;An, Jun-Seok;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1201-1209
    • /
    • 2007
  • The present study was designed to examine whether water extract of Acanthopanacis cortex(AC) has an effect on renal functional parameters in association with the expression of aquaporin 2 (AQP-2) and heme oxygenase-1 (HO-1) in the ischemia/reperfusion induced acute renal failure (ARF) rats. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-induced ARF rats was markedly restored by administration of AC (200 mg/kg, p.o.) with restoring expression of AQP 2 in the kidney. Administration of AC lowered the renal expression of HO-1, which was upregulated in rats with ischemia/reperfusion-induced ARF. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also markedly restored in ischemia-ARF rats by administration of AC. Histological study also showed that renal damages in the ARF rats were abrogated by administration of AC. Taken together, the present data indicate that AC ameliorates renal defects in rats with ischemia/reperfusion-induced ARF.