• Title/Summary/Keyword: repeated-batch operation

Search Result 26, Processing Time 0.027 seconds

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

Repeated Fed-Batch Fermentation of Wheat Flour Solution by Mixed Lactic Acid Bacteria (혼합 젖산균을 이용한 밀가루 용액의 반복 유가식 발효)

  • Kim, Sang-Yong;Noh, Bong-Soo;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.343-347
    • /
    • 1997
  • Effect of culture conditions on the fermentation of wheat flour solution by mixed lactic acid bacteria of Lactobacillus brevis, L. fermentum and L. plantarum was investigated. The optimum temperature for the fermentation of wheat flour solution was $35^{\circ}C$ because pH decreased the lowest value and TTA (total titrable acidity) increased the highest value at this temperature. In aerobic condition, fermentor was purged with air at 1.0 vvm and was purged with nitrogen gas at 1.0 vvm in anaerobic condition. The decrease of pH and the increase of TTA in aerobic condition were higher than those in anaerobic condition. In aerobic condition, the optimum condition of oxygen supply was found to be oxygen transfer rate coefficient of $60\;hr^{-1}$ which corresponded to agitation speed of 250 rpm in a 5 L fermentor. Repeated fed-batch cultures were performed using pH-stat in order to increase the productivity of fermented wheat flour. With increasing the repeated fraction of culture volume, mean cycle time increased but maximum operation time decreased. However, the volume of produced broth per culture volume per time and total volume of produced broth per culture volume were maximum at the repeated fraction of culture volume of 20%. In a repeated fed-batch fermentation of wheat flour solution using mixed lactic acid bacteria, the culture condition was optimum at temerature of $35^{\circ}C$, aeration rate of 1.0 vvm, oxygen transfer rate coefficient of $60\;hr^{-1}$, and repeated fraction of culture volume of 20%.

  • PDF

Repeated-batch Culture of Immobilized Gibberella fujikuroi B9 for Gibberellic Acid Production: An Optimization Study

  • Kim, Chang-Joon;Lee, Sang-Jong;Chang, Yong-Keun;Chun, Gie-Taek;Jeong, Yeon-Ho;Kim, Sung-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.544-549
    • /
    • 2006
  • The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), among the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.

Optimal Strategy for Ethanol Production in Repeated Fed-batch Operation Using Flocculent Sacchromyces cerevisiae (응집성 Sacchromyces cerevisiae 를 이용한 반복 유가식 ethanol 생산에서의 최적 운전전략)

  • Lee, Sang-Eun;Yeon, Ji-Hyeon;Seo, Yong-Chang;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • We investigated the optimal strategy for ethanol production using flocculent Sacchromyces cerevisiae ATCC 96581. Considering the characteristic of flocculent yeast, a repeated fed-batch ethanol fermentation was designed, in which non-sterile glucose powder was fed every 12 hours and, after cell flocculation, new feeding medium was exchanged every 24 or 36 hours. We particularly compared this fermentation process with those when cell flocculation was not carried out. Finally, the maximal total ethanol production was 825 g-ethanol during 120 hours, in which the time interval of withdrawal-fill of feeding medium was 24 hours and cell flocculation was carried out.

Production of Fructo-oligosaccharides by the Fructosyltransferase Immobilized onto an lon-exchange Resin (이온교환수지에 고정화된 Fructosyltransferase를 이용한 Fructo-oligosaccharides의 생산)

  • 윤종원;이민규송승구
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 1993
  • A fructosyltransferase from Aureobasidium pullulans was immobilized onto a polystyrene-type anionic ion-exchange resin and the production of fructo-oligosaccharides was Investigated by the immobilized enzyme. The optimum pH and the temperature of immobilized enzyme were found to be pH 5.0, $55^{\circ}C$ respectively. The thermal stability of the enzyme was greatly enhanced after immobilization. The reaction profiles of the immobilized enzyme was almost identical to those of the free cells and the soluble enzyme. The immobilized enzymes were stable up to 20 cycles without loss of initial activity in a repeated-batch operation $50^{\circ}C$.

  • PDF

Bioethanol Production using a Yeast Pichia stipitis from the Hydrolysate of Ulva pertusa Kjellman (효모 Pichia stipitis를 이용한 구멍갈파래 가수분해 추출물로 부터 바이오 에탄올 생산)

  • Lee, Ji-Eun;Lee, Sang-Eun;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.243-248
    • /
    • 2011
  • We studied the repeated-batch process for the bioethanol production from the hydrolysate of Ulva pertusa Kjellman using yeast Pichia stipitis, which is able to assimilate C6- and C5-monosaccharides. During 180-hour operations, the repeated-batch process was carried out stably, and the average bioethanol concentration reached 11.9 g/L from about 30 g/L of reducing sugar in the hydrolysate. Meanwhile, the bioethanol yields, based on the reducing sugar and the quantitative TLC analysis, were 0.40 and 0.37, respectively, which corresponded to 78.4% and 72.5% of theoretical value, respectively. Throughout the quantitative process analysis, it was also demonstrated that 39.67 g-bioethanol could be produced from 1 kg of dried Ulva pertusa Kjellman. In this study, we verified that the bioethanol production from the hydrolysate of Ulva pertusa Kjellman was feasible using a yeast Pichia stipitis, particularly during the repeated-batch operation.

Preparation and Characteristics of Immobilized Sludge by the PAA Entrapment Method (PAA 포괄법에 의한 고정화 슬러지의 제조 및 특성에 관한 연구)

  • 최석순
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.49-54
    • /
    • 2002
  • This study was conducted to evaluate the feasibility and characteristics of poly acrylamide (PAA) immobilized sludge as a microbial entrapment bead for wastewater treatment. In the PAA method of immobilized sludge, it was found that the optimum acrylamide concentration for actual wastewater treatment was to be 12%. When the sequencing batch reactor (SBR) was operated during 30 days, removal efficiencies of TOC and phosphate was 95% and 70ft, respectively. From this research, repeated cycle of anaerobic and aerobic conditions is required to enhance the removal of TOC and phosphate. During the operation, immobilized cells could be used without being disrupted.

Hydrolysis of Egg Yolk Protein in a Packed Bed Reactor by Immobilized Enzyme (충진층 반응기에서 고정화 효소에 의한 난황 단백질의 가수분해)

  • Kang, Byung-Chul
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1656-1661
    • /
    • 2010
  • Alkaline protease for the hydrolysis of egg yolk protein was immobilized on five carriers - Duolite A568, Celite R640, Dowex-1, Dowex 50W and Silica gel R60. Duolite A568 showed a maximum immobilization yield of 24.7%. Optimum pH for the free and immobilized enzyme was pH 8 and 9, respectively. However, no change was observed in optimum temperature ($50^{\circ}C$). Thermal stability was observed in immobilized enzymes compared to free enzymes. The immobilized enzyme retained 86% activity after 10 cycle operations in a repeated batch process. The effect of flow rate on the stability of enzyme activity in continuous packed-bed reactor was investigated. Lowering flow rate increased the stability of the immobilized enzyme. After 96 hr of continuous operation in a packed-bed reactor, the immobilized enzyme retained 83 and 61% activity when casein and egg yolk were used as a raw materials, respectively.

Chlorphenesin Galactoside Production using Immobilized β-galactosidase-producing Escherichia coli (고정화된 β-galactosidase 생산 대장균을 이용한 chlorphenesin galactoside 생산)

  • Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1164-1168
    • /
    • 2015
  • Previous research showed that chlorphenesin galactoside (CPN-Gal), a preservative in cosmetics, was safer than CPN against human skin cells [9]. To establish a stable and long-term process for CPN-Gal production, we investigated the repeated-batch process. In this process, β-gal-producing recombinant Escherichia coli cells were immobilized in calcium alginate beads, and CPN was converted to CPN-Gal by the transgalactosylation reaction. The process was conducted in a 300 ml flask, which contained E. coli cell-immobilized alginate beads, 33.8 mM of CPN, and 400 g/l of lactose. The pH and temperature were 7.0 and 40℃, respectively. During the repeated-batch operation, four consecutive batch operations were conducted successfully until 192 hr. The conversion yield of CPN to CPN-Gal was 64% during 192 hr, which was higher than the values in previous reports [3, 13]. Thereafter, however, the conversion yield gradually decreased until the operation was finished at 336 hr. Western blotting of immobilized E. coli cells revealed that β-gal gradually decreased after 192 hr. In addition, alginate beads were cracked when the operation was finished. It is probable that, including this loss of E. coli cells by cracks, deactivation, and product inhibition of E. coli β-gal might lead to a gradual decrease in the production of CPN-Gal after 192 hr. However, as the purification of β-gal is not necessary with β-gal-producing recombinant E. coli cells, β-gal-producing E. coli cells might be a practical and cost-effective approach for enzymatically synthesizing CPN-Gal. It is expected that this process will be extended to long-term production process of CPN-Gal for commercialization.

Simulation on Long-term Operation of an Anaerobic Bioreactor for Korean Food Wastes

  • Choi, Dong Won;Lee, Woo Gi;Lim, Seong Jin;Kim, Byung Jin;Chang, Ho Nam;Chang, Seung Teak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of Solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5C in winter to 25C in Summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation .