Browse > Article

Repeated-batch Culture of Immobilized Gibberella fujikuroi B9 for Gibberellic Acid Production: An Optimization Study  

Kim, Chang-Joon (Department of Chemical and Biological Engineering and ERI, Gyeongsang National University)
Lee, Sang-Jong (STR Biotech. Co., Ltd.)
Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Chun, Gie-Taek (Department of Molecular Bioscience, Kangwon National University)
Jeong, Yeon-Ho (Department of Molecular and Medical Biotechnology, Kangwon National University)
Kim, Sung-Bae (Department of Chemical and Biological Engineering and ERI, Gyeongsang National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.6, 2006 , pp. 544-549 More about this Journal
Abstract
The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), among the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.
Keywords
immobilized fungal cells; celite beads; repeated-batch operations; gibberellic acid; cotton seed flour;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Kumar, P. K. R. and B. K. Lonsane (1988) Immobilized growing cells of Gibberella fujikuroi P-3 for production of gibberellic acid and pigment in batch and semi-continuous cultures. Appl. Microbiol. Biotechnol. 28: 537-542
2 Constantinides, A. and N. Mehta (1991) Periodic operation of immobilized live cell bioreactor for the production of candicidin. Biotechnol. Bioeng. 37: 1010-1020   DOI
3 Sarra, M., C. Casas, and F. Godia (1997) Continuous production of a hybrid antibiotic by Streptomyces lividans TK21 pellets in a three-phase fluidized-bed bioreactor. Biotechnol. Bioeng. 53: 601-610   DOI   ScienceOn
4 Escamilla, E. M., L. Dendooven, I. P. Magana, S. R. Parra, and M. De la Torre (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J. Biotechnol. 76: 147-155   DOI   ScienceOn
5 Candau, R., J. Avalos, and E. Cerda-Olmedo (1992) Regulation of gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol. 100: 1184-1188   DOI   ScienceOn
6 Lee, T. H., G. T. Chun, and Y. K. Chang (1997) Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Prog. 13: 546-550   DOI   ScienceOn
7 Bruckner, B. (1992) Regulation of gibberellin formation by the fungus Gibberella fujikuroi. pp. 129-143. In: D. J. Chadwick and J. Whelan (eds.). Ciba Foundation Symposium 171. Secondary Metabolites: Their Function and Evolution. John Wiley & Sons Publishers, Chichester, UK
8 Nava Saucedo, J. E., J.-N. Barbotin, and D. Thomas (1989) Continuous production of gibberellic acid in a fixed-bed reactor by immobilized mycelia of Gibberella fujikuroi in calcium alginate beads. Appl. Microbiol. Biotechnol. 30: 226-233
9 Lim, J. S., J. H. Lee, J. M. Kim, S. W. Park, and S. W. Kim (2006) Effects of morphology and rheology on neofructosyltransferase production by Penicillium citrinum. Biotechnol. Bioprocess Eng. 11: 100-104   과학기술학회마을   DOI   ScienceOn
10 Ibrahim, S., S. Vikineswary, S. Al-Azad, and L. L. Chong (2006) The effects of light intensity, inoculum size, and cell immobilization on the treatment of sago effluent with Rhodopseudomonas palustris strain B1. Biotechnol. Bioprocess Eng. 11: 377-381   과학기술학회마을   DOI   ScienceOn
11 Duran-Paramo, E., H. Molina-Jimenez, M. A. Brito-Arias, and F. Robles-Martinez (2004) Gibberellic acid production by free and immobilized cells in different culture systems. Appl. Biochem. Biotechnol. 113-116: 381-388
12 Tudzynski, B. (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl. Microbiol. Biotechnol. 52: 298-310   DOI
13 Lu, Z.-X., Z.-C. Xie, and M. Kumakura (1995) Production of gibberellic acid in Gibberella fujikuroi adhered onto polymeric fibrous carriers. Process Biochem. 30: 661-665   DOI
14 Na, J.-G., H. H. Kim, and Y. K. Chang (2005) On-line estimation of cell growth from agitation speed in DO-stat culture of a filamentous microorganism, Agaricus blazei. Biotechnol. Bioprocess Eng. 10: 571-575   과학기술학회마을   DOI   ScienceOn
15 Gbewonyo, K. and D. I. C. Wang (1983) Confining mycelial growth to porous microbeads: A novel technique to alter the morphology of non-newtonian mycelial cultures. Biotechnol. Bioeng. 25: 967-983   DOI   ScienceOn
16 Borrow, A., S. Brown, E. G. Jefferys, R. H. J. Kessell, E. C. Lloyd, P. B. Lloyd, A. Rothwell, B. Rothwell, and J. C. Swait (1964) The kinetics of metabolism of Gibberella fujikuroi in stirred culture. Can. J. Microbiol. 10: 407-444
17 Gbewonyo, K. and D. I. C Wang (1983) Enhancing gasliquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column. Biotechnol. Bioeng. 25: 2873-2887   DOI   ScienceOn
18 Kim, C. J., Y. K. Chang, G. T. Chun, Y. H. Jeong, and S. J. Lee (2001) Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol. Prog. 17: 453-461   DOI   ScienceOn
19 Deo, Y. M. and G. M. Gaucher (1985) Effect of nitrogen supplementation on the longevity of antibiotic production by immobilized cells of Penicillium urticae. Appl. Microbiol. Biotechnol. 21: 220-227   DOI
20 Park, Y. H., E. Y. Kim, W. T. Seo, K. H. Jung, and Y. J. Yoo (1989) Production of cephalosporin C in a fluidizedbed bioreactor. J. Ferment. Bioeng. 67: 409-414   DOI   ScienceOn