• Title/Summary/Keyword: renormalization

Search Result 45, Processing Time 0.018 seconds

On holographic Wilsonian renormalization group of massive scalar theory with its self-interactions in AdS

  • Gitae Kim;Jae-Hyuk Oh
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.30-36
    • /
    • 2022
  • Holographic model of massive scalar field with its self-interaction λϕn in AdS space is able to give a logarithmic scale dependence to marginal multi-trace deformation couplings on its dual conformal field theory, where λ is the self-interaction coupling of the scalar field, ϕ, and n is an integral number. In arXiv:1501.06664, the authors realize this feature by looking at bulk scalar solutions near AdS boundary imposing a specific boundary condition between the coefficients of non-normalizable and normalizable modes of the scalar field excitations. We study the same holographic model to see scale dependence of marginal deformations on the dual conformal field theory by employing completely different method: holographic Wilsonian renormalization group. We solve Hamilton-Jacobi equation derived from the holographic model of massive scalar with λϕn interaction and obtain the solution of marginal multi-trace deformations up to the leading order in λ. It turns out that the solution of marginal multi-trace deformation also presents logarithmic behavior in energy scale near UV region.

Global Bifurcations and Chaos Via Breaking of KAM Tori of an Harmonically Excited Imperfect Circular Plate

  • Samoylenko, S.B.;Lee, W.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The renormalization-group technique for KAM tori is used to obtain the criteria for large-scale stochasticity in the system.

  • PDF

A GENERAL RICCI FLOW SYSTEM

  • Wu, Jia-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.253-292
    • /
    • 2018
  • In this paper, we introduce a general Ricci flow system, which is closely linked with the Ricci flow and the renormalization group flow, etc. We prove the short-time existence, the entropy functionals, the higher derivatives estimates and the compactness theorem for this general Ricci flow system on closed Riemannian manifolds. These basic results are useful tools to understand the singularities of this system.

Hardware Implementation of Binary Arithmetic Decoder in HEVC CABAC Decoder (HEVC CABAC 복호화기의 이진 산술 복호화기 설계)

  • Kim, Sohyun;Kim, Doohwan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.435-438
    • /
    • 2016
  • HEVC CABAC binary arithmetic decoder operates in three decoding modes i.e. regular, bypass, and termination modes, where their decoding operations and time differ a lot. Furthermore, when renormalization occurs, its internal feedback loop induces large delay. In this paper, a binary arithmetic decoder was designed to solve this problem. In advance, it checks all range values with possible renormalization. When renormalization occurs, it immediately updates range value and finishes all calculation in a cycle. When implemented in 0.18 um process technology, its maximum operating frequency and gate counts are 215 MHz and 5,423 gates, respectively.

Measurement of Multi-Port S-Parameters using Four-Port Network Analyzer

  • Kim, Jongmin;Luong, Duc Long;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.589-593
    • /
    • 2013
  • An efficient measurement methodology is proposed to construct the scattering parameters of a multi-port device using a four-port vector network analyzer (VNA) without the external un-terminated ports. By using the four-port VNA, the reflected waves from the un-terminated ports could be minimized. The proposed method significantly enhances the accuracy of the S-parameters with less number of measurements compared to the results of classical renormalization technique which uses two-port VNA. The proposed method is validated from the measured data with the coupled 8-port micro-strip lines.

Efficient Rounding Algorithm and Implementation for IEEE Floating Point Addition/Subtraction (IEEE 부동 소수점 덧셈/뺄셈 연산에서 효율적인 반올림 알고리즘과 구현)

  • 김병화;안현식;김도현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.24-30
    • /
    • 1995
  • The process of conventional floating-point additio $n_traction operation consists of alignment, additio $n_traction, normalization, and rounding stage. Because rounding stage needs an incrementor or adder, it occupies much time and chip area. In addition, it needs additional time and hardware for renormalization which occurs in overflow due to rounding In this paper, floating-point adde $r_tractor performing rounding and additio $n_traction in parallel is presented by using the feature of additio $n_traction and carry select adder used in additio $n_tracting stage. Proposed floating point adde $r_tractor doesn't need time and incrementor nor adder for rounding. Also, renormalization doesn't occur since rounding is performed prior to normalization.to normalization.

  • PDF

Decoupling of Background and Resonance Scatterings in Multichannel Quantum Defect Theory and Extraction of Dynamic Parameters from Lu-Fano Plot

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.891-896
    • /
    • 2009
  • Giusti-Suzor and Fano introduced translations of the scales of Lu-Fano plots by phase renormalization in order to decouple the intra- and inter-channel couplings in multichannel quantum defect theory (MQDT). Their theory was further developed by others to deal with systems involving a larger number of channels. In different directions, MQDT was reformulated into forms with a one-to-one correspondence to those in Fano's configuration mixing theory of resonance for photofragmentation processes involving one closed and many open channels. In this study, the theory was further developed to fully reveal the coupling nature, decoupling of the background and resonance scattering in physical scattering matrices as well as to further extract the dynamic parameters undiscovered by Fano and his colleagues. This theory was applied to the photoabsorption spectrum of $H_2$ observed by Herzberg's group.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Femtosecond degenerate and nondegenerate pump-probe experiments in bulk GaAs below the band gap

  • Yahng, J. S.;Kim, D. S.;Fatti, N.Del;Vallee, F.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.100-103
    • /
    • 1997
  • We perform degenerate and nondegenerate pump-probe experiments on bulk GaAs at 100 K below the band gap. We mostly observe a negative differential transmission signal both in the degenerate and nondegenerate experiments. We interpret our signal as due to two-photon absorption. This negative signal has a different origin from the normally considered band gap renormalization for resonant excitations.