• Title/Summary/Keyword: removal catalyst

Search Result 410, Processing Time 0.029 seconds

Removal of H2S by Selective Catalytic Oxidation II. Selective Oxidation of H2S on TiO2/SiO2 Catalysts (선택적 촉매 산화 반응에 의한 황화 수소의 제거 II. TiO2/SiO2 촉매 상에서 황화 수소의 선택적 산화 반응)

  • Chun, S.W.;Park, D.W.;Woo, H.C.;Hong, S.S.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.645-652
    • /
    • 1996
  • Selective catalytic oxidation of $H_2S$ to elemental sulfur using $TiO_2/SiO_2$ catalysts was investigated in this study. The reaction test with pure $TiS_2$ and $Ti(SO_4)_2$ and cyclic temperature operation revealed that $TiO_2$ had a good resistance to sulfation and sulfidation, which are known as the main cause of catalytic deactivation in sulfur recovery process. With the increase of $TiO_2$ loading amount in $TiO_2/SiO_2$ catalysts, the conversion of $H_2S$ increased and the selectivity of elemental sulfur was very slightly decreased. As the ratio of $O_2/H_2S$ increased, the selectivity to elemental sulfur was drastically decreased. In the presence of 10 vol.% water vapor to a stoichiometric mixture of $H_2S$ and $O_2$($H_2S$= 5 vol.% O=2.5 vol.% ), both activity and selectivity of 10 wt.% $TiO_2/SiO_2$ catalyst are decreased, but it still showed more than 80% of sulfur yield.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Synthesis of an Octapeptide (Alanine Angiotensin) (Octapeptide (Alanine Angiotensin) 의 合成)

  • Park, Won-Kil
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1961
  • We have shown that carboxy-peptidase destroys the biological activity of angiotensin octa-and deca-peptides. Since Proline occurs as the seventh amino acid from the amino end of the chain and since carboxypeptidase does not cleave proline from a peptid chain, it is evident that the heptapeptid H.asp-arg-val-tyr-ileu-his-pro.OH is formed by this hydrolysis. This peptide must then be biologically inactive. In order to determine whether the phenyl group of the C-terminal amino acid was the necessary requirement for biological activity of the octapeptide, $ala^8$ angiotensin octapeptide(amino acids of peptides numbered from amino end) was synthesized. For this synthesis the four dipeptides were prepared: carbobenzoxy-L-prolyl-L-alanine-P-nitrobenzyl-ester, m.p. $134-135^{\circ}C,$ carbobenzoxy-L-isoleucyl-imidazole benzyl-L-histidine methyl ester, m.p. $114-116^{\circ}C,$ carbobenzoxy-L-valyl-L-tyrosine hydrazide and carbobenzoxy B-benzyl-L-aspartyl-nitro-L-arginine. The first three dipeptides were obtained as crystalline compounds. Imidazole-benzyl-L-histidine was used in the hope that it would block the histidine imidazole against side reactions in steps subsequent to the formation of the C-terminal tetrapeptide. Also, it was through that the imidazole benzylated peptides would be easier to crystallize. This, however, was not the case. The tetrapeptide, carbobenzoxy-L-isoleucyl-L-im, benzyl-histidyl, L-prolyl-L-alanine-nitrobenzyl ester was not obtained in a crystalline form. Neither could the mono-or dihydrobromide of the tetrapeptide free base be induced to crystallize. Carbobenzoxy-L-valyl-L-tyrosine azide was condensed with the tetrapeptide free base to yield the protected hexapeptide; carbobenzoxy-L-valyl-L-tyrosyl-L-isoleucyl-L-im, benzyl, histidyl-L-Prolyl-L-alanine-nitrobenzyl ester. Upon removal of the carbobenzoxy group with hydrogen bromide in acetic acid an amorphous free base hexapeptide ester was obtained. This compound gave the correct C, H, N analysis and contained the six amino acids in the correct ratio. The octapeptide was obtained by condensing this hexapeptide with carbobenzoxy-B-benzyl-L-aspartyl-nitro, L-arginine using the mixed anhydride method of condensation. This amorphous product was proven to be homogenous by chromatography in two solvent systems and upon hydrolysis yielded the eight amino acids in correct ratio. The five protecting groups were removed from the octapeptide by hydrogenolysis over palladium black catalyst. Biological assay of the free peptide indicated that it possessed less than 0.1 per cent of both pressor and oxytocic activity of the phenylalanine8 angiotensin. This suggests that the phenyl group is a point of attachment between angiotensin and its biological receptor site.

  • PDF

Size and Shape Effect of Metal Oxides on Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides (금속 산화물 촉매의 크기와 형태에 따른 질소산화물의 탄화수소 선택적 촉매환원 특성)

  • Ihm, Tae-Heon;Jo, Jin-Oh;Hyun, Young Jin;Mok, Young Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.20-28
    • /
    • 2015
  • This work investigated the size and shape effect of ${\gamma}$-alumina-supported metal oxides on the hydrocarbon selective catalytic reduction of nitrogen oxides. Several metal oxides including Ag, Cu and Ru were used as the catalysts, and n-heptane as the reducing agent. For the Ag/${\gamma}$-alumina catalyst, the $NO_x$ reduction efficiency in the range of $250{\sim}400^{\circ}C$ increased as the size of Ag decreased (20 nm>50 nm>80 nm). The shape effect of metal oxides on the $NO_x$ reduction was examined with spherical- and wire-shape nanoparticles. Under identical condition, higher catalytic activity for $NO_x$ reduction was observed with Ag and Cu wires than with the spheres, while spherical- and wire-shape Ru exhibited similar $NO_x$ reduction efficiency to each other. Among the metal oxides examined, the best catalytic activity for $NO_x$ reduction was obtained with Ag wire, showing almost complete $NO_x$ removal at a temperature of $300^{\circ}C$. For Cu and Ru catalysts, considerable amount of NO was oxidized to $NO_2$, rather than reduced to $N_2$, leading to lower $NO_x$ reduction efficiency.

A Study on Cabbage Salting Brine Reuse Technology Combining an Electrochemical Method and Activated Carbon Adsorption (전기화학적 방법과 활성탄 흡착 연계 공정을 이용한 절임염수 재이용 기술 연구)

  • Lee, Eun-Sil;Kim, Daegi
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.536-542
    • /
    • 2018
  • A system combining an electrochemical method and an adsorption system using activated carbon was assessed to facilitate the reuse of cabbage-salting brine. IrOx/Ti insoluble catalyst electrodes were used in the experiment. The results were analyzed to identify any changes in the residual chlorine concentration according to variations in the current density at a salinity of 10 %, as well as the capacity of the activated carbon to adsorb the residual chlorine and organic matter. For current densities of $500A/m^2$ and $1,000A/m^2$, the residual chlorine concentration did not increase, instead stabilizing once the current reached 0.33 Ah/L. To assess the adsorption efficiency according to the residual chlorine concentration, the unit amount of the adsorption can be estimated from $Y=0.0066+2.087{\times}10^{-4}b$. For both residual chlorine generation using an electrochemical method and chlorine removal through activated-carbon adsorption, the unit amount of adsorption was 0.33 g/g. The maximum amount of $COD_{Cr}$ organic matter adsorbed by the activated carbon was 0.021 g/g, while for $COD_{Mn}$, the value was 0.004 g/g.

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.

Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems (원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구)

  • Lee, Jin-Seon;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effects of different abutment materials on abutment screw loosening and settling-down effect in conical connection type implant system. Materials and methods: Three types of abutment, cementation, gold UCLA, and metal UCLA abutment were used. Two UCLA groups were fabricated in a similar pattern to cementation abutment. Type III gold alloy and Nickel-Chromium alloy was used for casting gold UCLA abutment and metal UCLA abutment, respectively. Fixture and abutment were tightened to 30 Ncm by using digital torque controller and re-tightening was conducted with same force after 10 minutes. Digital torque gauge was used to measure loosening torque and fixture/abutment length was measured by digital micrometer. Dynamic loads between 25 N and 250 N were applied with $0^{\circ}$ angle to the abutment axis. After loading, fixture/abutment length was re-measured and amount of settlement was calculated. Loosening torque value was also measured for comparison Results: All three groups showed significant differences of length when comparing before and after loading, but there was no significant difference of settling amount in all groups. Loosening torque values were significantly decreased when comparing before and after loading in all groups($P$<.05). However, there was no significant difference in loss of loosening torque values when compared to groups. Conclusion: In internal conical connection type implants, dynamic load affected on settlement and loosening torque of implant, but there was no differences between abutments materials. Likewise gold UCLA abutment, metal UCLA abutment might be able to withstand functional load.

Photocatalytic Oxidation of Arsenite Using Goethite and UV LED (침철석과 자외선 LED를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Arsenic (As) has been considered as the most toxic one among various hazardous materials and As contamination can be caused naturally and anthropogenically. Major forms of arsenic in groundwater are arsenite [(As(III)] and/or arsenate [(As(V)], depending on redox condition: arsenite and arsenate are predominant in reduced and oxidized environments, respectively. Because arsenite is much more toxic and mobile than arsenate, there have been a number of studies on the reduction of its toxicity through oxidation of As(III) to As(V). This study was initiated to develop photocatalytic oxidation process for treatment of groundwater contaminated with arsenite. The performance of two types of light sources (UV lamp and UV LED) was compared and the feasibility of goethite as a photocatalyst was evaluated. The highest removal efficiency of the process was achieved at a goethite dose of 0.05 g/L. Based on the comparison of oxidation efficiencies of arsenite between two light sources, the apparent performance of UV LED was inferior to that of UV lamp. However, when the results were appraised on the basis of their emitting UV irradiation, the higher performance was achieved by UV LED than by UV lamp. This study demonstrates that environmentally friendly process of goethite-catalytic photo-oxidation without any addition of foreign catalyst is feasible for the reduction of arsenite in groundwater containing naturally-occurring goethite. In addition, this study confirms that UV LED can be used in the photo-oxidation of arsenite as an alternative light source of UV lamp to remedy the drawbacks of UV lamp, such as long stabilization time, high electrical power consumption, short lifespan, and high heat output requiring large cooling facilities.