DOI QR코드

DOI QR Code

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure

가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발

  • Jang, Jae Kyung (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Lee, Donggwan (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Paek, Yee (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Lee, Taeseok (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Lim, Ryu Gap (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Kim, Taeyoung (Department of Environmental Engineering, Chosun University)
  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 이동관 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 백이 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 이태석 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 임류갑 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김태영 (조선대학교 환경공학과)
  • Received : 2020.10.07
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

가축분뇨는 고액분리 후 액상 가축분뇨를 호기생물반응조에서 충분히 부숙시켜 화학비료를 대체한 유기질비료(액비)로 이용하고 있다. 그러나 액비는 작물 생장 중인 여름철에는 토양 살포가 제한되기 때문에 액비 처분 문제가 반복 발생되고 있다. 액비를 추비(웃거름)로 이용하기 위해서는 액비 내 슬러지 저감, 병원성 미생물에 대한 안정성 문제가 확보되어야 한다. 본 연구에서는 가축분뇨 액비의 추비 이용을 위해 부유물질(SS) 제거와 살균 효과가 있다고 알려져 있는 마이크로버블 장치(FeMgO 촉매 삽입)의 액비 내 부유물질과 대장균군의 저감효과를 알아보고 마이크로 필터 장치를 연계한 시스템의 부유물질 제거 효율 향상 여부를 확인하였다. 마이크로버블 장치의 부상분리 과정을 거치면서 액비 내 부유물질은 57.9% 제거되었으며, 대장균군은 검출되지 않았다(16,200 MPN/100mL → 0 MPN/100mL). 마이크로 버블 장치와 마이크로 필터 연계 시스템의 수리학적 체류시간 최적화을 통해 액비 내 부유물질 제거 효율은 수리학적 체류시간이 0.1h 조건에서 92.9%까지 향상된 것을 확인하였다. 같은 조건에서 처리수의 성상을 확인한 결과 유기오염물질은 64.5%(TCOD), 70.1%(SCOD) 제거되었으며 인산염인(PO4-P)과 총질소(TN)의 농도도 각각 54.9%와 51.5%까지 감소되었다. 이러한 연계 시스템으로부터 처리된 유출수는 기존 액비의 조성보다 부유물질 및 오염물질 농도 감소, 대장균군이 포함되지 않아 추비로 직접 이용이 가능할 것으로 판단된다.

Keywords

References

  1. E. S. Lee, C. S. Choi, "Technical trend and developmental direction of biological phosphate removal", Korean Industrial Chemistry News, Vol.14, No.5, pp.30-37, 2011.
  2. M-S. Kim, D-H. Kwak, "Effect of livestock liquid manurer released at a rice field on quality of soil and water in the saemangeum watershed", J. Korean Soc. water wastwater, Vol.30, No.1, pp.19-31, 2016. DOI : https://doi.org/10.11001/jksww.2016.30.1.019
  3. W-C. Park, M-A. Lee, I-W. Sung, "Phosphorus removal from advanced wastewater treatment process using PAC", J. Korea Soc. Envrion. Eng., Vol.36, No.2, pp.96-102, 2014. DOI : https://doi.org/10.4491/ksee.2014.36.2.96
  4. M-K. Kim, S-I. Kwon, S-S. Kang, G-B. Jung, S-C. Hong, M-J. Cha, K-H. So, "Minimizing nutrient loading from SCB treated paddy rice fields through water management", Korean J. Soil Sci. Fert. Vol.45, No.5, pp.671-675. 2012. DOI : https://doi.org/10.7745/kjssf.2012.45.5.671
  5. J. K. Jang, Y. J. Jin, S. Kang, T. Kim, Y. Paek, J. H. Sung, Y. H. Kim, "Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by microbubble-Oxygen in a Single Reactor", Journal of Korean Society of Environmental Engineers, Vol.39, No.11, pp.599-606, 2017. DOI : https://doi.org/10.4491/ksee.2017.39.11.599
  6. K-H. Jeong, J-K. Kim, M.A. Khan, D-W. Han, J-H. Kwag, "A study on the characteristics of livestock manure treatment facility in korea", J. of Korea, Vol.22, No.4, pp.28-44, 2014. DOI : https://doi.org/10.17137/korrae.2014.22.4.028
  7. Ministry of environment (Korea) home page,
  8. A. Agarwal, W. J. Ng, Y. Liu, "Principle and applications of microbubbles and nanobubble technology for water treatment", Chemosphere, Vol.84, No.9, pp.1175-1180, 2011. DOI : https://doi.org/10.1016/j.chemosphere.2011.05.054
  9. D-H. Cho, D-E. Kim, J-W. Park, G-C. Sung, Y-S. Kwon, "A study on the behavior micro-nano bubble for concentration oxygen stabilization techniques", Proceeding of The Korea Institute of Electrical Engineers, pp.1329-1330, 2010.
  10. H-S. Cha, "Present state and future prospect for microbubble technology", Bulletin of Food Technology, Vol.22, No.3, pp.544-552, 2009.
  11. M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", J. Phys. Chem. B., Vol.111, No.6, pp.1343-1347, 2007. DOI : https://doi.org/10.1021/jp0669254
  12. J. Lim, H. Kim, D. Park, Y. Cho, S. Song, S. Park, J. Kim, "Characteristic of Mixing and DO Concentration Distribution in Aeration Tank by Microbubble Supply", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.5, pp.251-259, 2016. DOI : http://dx.doi.org/10.5762/KAIS.2016.17.5.251
  13. J. K. Jang, M. Y. Kim, J. H. Sung, I. S. Chang, T. Y. Kim, H. W. Kim, Y. H. Kim, "Effect of the application of microbubbles and/or catalyst on the sludge reduction and organic matter of livestock wastewater", Journal of Korean Society of Environmental Engineers, Vol.37, No.10, pp.558-562, 2015. DOI : https://doi.org/10.4491/ksee.2015.37.10.558
  14. S. H. Lee, K. J. Jung, J. H. Kwon, S. H. Lee, "Effect of microbubble ozonation process on performance of biological reactor system for excess sludge solubilisation", J. Korean Soc. Environ. Eng., Vol.33, No.2, pp.113-119, 2011. DOI : https://doi.org/10.4491/ksee.2011.33.2.113
  15. W. J. Lee, C. H. Lee, J. Y. Yoo, K. Y. Kim, K. I. Jang, "Sterilization efficacy of washing method using based on microbubbles and electrolyzed water on various vegetables", J. Korean Soc. Food Sci. Nutr., Vol.40, No.6, pp.912-917, 2011. DOI : https://doi.org/10.3746/jkfn.2011.40.6.912
  16. C. S. Kim, S. Y. Yu, G. I. Lee, S. H. Kim, J. W. Lee, J. K. Song, "Sterilizing effect of plant pathogenic fungi using ozone microbubble", Producted Horticulture and Plant Factory, Vol.23, No.3, pp.250-255, 2014. DOI : https://doi.org/10.12791/ksbec.2014.23.3.250
  17. X. Xiong, B. Wang, W. Zhu, K. Tian, H. Zhang, "A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application", Catalysts, Vol.9, No.1, 10, 2019. DOI : https://doi.org/10.3390/catal9010010
  18. T. Azuma, K. Otomo, M. Kunitou, M. Shimizu, K. Hosomaru, S. Mikata, Y. Mino, T. Hayashi, "Removal of pharmaceuticals in water by introduction of ozonated microbubbles", Separation and Purification Technology, Vol.212, pp.483-489, 2019. DOI : https://doi.org/10.1016/j.seppur.2018.11.059
  19. L. Jothinathan, Q. Q. Cai, S. L. Ong, J.Y. Hu, "Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process", Chemosphere, 127980, 2020. DOI : https://doi.org/10.1016/j.chemosphere.2020.127980
  20. A. Agarwal, W. J. Ng, Y. Liu, "Principle and applications of microbubbles and nanobubble technology for water treatment", Chemosphere, Vol.84, No.9, pp.1175-1180, 2011. DOI : https://doi.org/10.1016/j.chemosphere.2011.05.054
  21. H. S. Cha, "Present state and future prospect for microbubble technology", Bulletin of Food Technology, Vol.22, No.3, pp.544-552, 2009.
  22. J. Y. Lim, J. H. Kim, "Application of Microbubble in MBR Process for Night Soil Treatment", Journal of the Korea Organic Resources Recycling Association, Vol.25, No.1, pp.93-101, 2017. DOI : https://doi.org/10.17137/korrae.2017.25.1.93
  23. S. Cho, "Low temperature activation of benzylic C-H bonds with heterogeneous Fe/MgO catalyst under atmospheric molecular oxygen" Kyung-Hee University, Seoul, Korea, pp. 67-71, 2002. DOI: https://doi.org/10.1016/j.apcata.2004.03.008
  24. B. Y. Tak, B. S. Tak, Y. J. Kim, Y. J. Park, Y. H. Yoon, "Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box-Behnken Design(BBD)", Journal of Industrial and Engineering Chemistry, Vol.28, No.25, pp.307-315, Aug. 2015. DOI : https://doi.org/10.1016/j.jiec.2015.03.008
  25. J. Hwangbo, E.C. Hong, H. D. Park, D. W. Kim, S. B. Cho, "The study on the amount and major compositions of excreta from swine", Journal of animal Science and Technology, Vol.52, No.4. pp.319-328, 2010. DOI : https://doi.org/10.5187/jast.2010.52.4.319
  26. D. H. Jeong, Y. Lee, C. Lee, S. A. Choi, M. Kim, Y. Lee, M. Kim, S. Yu, "Environmental impact of livestock manure and organic fertilizer use on the masan stream watershed", Journal of Environmental Impact Assessment, Vol.23, No.2, pp.75-87, 2014. DOI : https://doi.org/10.14249/eia.2014.23.2.75