Synthesis of Chromium Nitride and Evaluation of its Catalytic Property

크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구

  • Lee, Yong-Jin (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Kwon, Heock-Hoi (Department of Chemical and Environmental Engineering, Soongsil University)
  • 이용진 (숭실대학교 환경화학공학과) ;
  • 권혁회 (숭실대학교 환경화학공학과)
  • Received : 2006.03.28
  • Accepted : 2006.06.19
  • Published : 2006.10.10

Abstract

We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

$CrCl_{3}$$NH_{3}$와 반응시켜 약 $850^{\circ}C$에서 표면적이 높은 단일 상 CrN 촉매를 합성하였다. 열질량분석을 통해 고체상 화학변이가 발생하는 온도를 파악하였고 물질의 상을 XRD로 분석하였다. 합성물질의 표면적, 결정크기 등을 분석하였고 합성변수의 영향을 확인하였다. 합성된 질화물의 표면적은 $12{\sim}47m^2/g$이었다. 공간속도는 표면적 증가에 약하게나마 영향을 미쳤는데 반응중간생성물의 빠른 제거가 표면적을 높이는데 기여하는 것으로 파악되었다. 승온환원반응 분석 결과 CrN은 비활성화(passivation)시 거의 산화되지 않아 수소분위기에서의 환원이 거의 일어나지 않았으며 약 $700^{\circ}C$$950^{\circ}C$ 부근에서 결정격자 중의 질소가 $N_{2}$로 분해되었다. 공기분위기에서 10 K/min의 속도로 가열하면 $300^{\circ}C$ 이후의 온도에서 산화가 진행되어 $800^{\circ}C$ 부근에서 $Cr_{2}O_{3}$ 상이 형성되기 시작하였으며 $900^{\circ}C$에서도 완전히 산화되지 않았다. 부탄과 피리딘을 이용한 활성실험 결과 CrN 촉매는 탈수소반응에 선택적으로 높은 활성을 가졌으며 수첨탈질이나 수소분해반응 활성은 거의 없었다. 부탄의 탈수소반응에서 부피반응속도는 상용 촉매인 $Pt-Sn/Al_{2}O_{3}$보다 우수하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. J. G. Chen, and B. Fruhberger, M. D. Weisel, J. E. Baumgartner, and B. D. DeVries, in The Chemistry of Transition Metal Carbides and Nitrides, ed. S.T. Oyama, Blackie Academia and Professional, Glasgow (1996)
  2. K. E. Curry, Ph. D. Dissertation, The University of Michigan, Ann Arbor, USA (1995)
  3. M. Neylon, S. Choi, C. Kendrick, H. Kwon, and L. T. Thompson, Appl. Catal. A. Catal., 183, 253 (1999) https://doi.org/10.1016/S0926-860X(99)00053-8
  4. R. B. Levy and M. Boudart, Science, 181, 547 (1973) https://doi.org/10.1126/science.181.4099.547
  5. J. Choi, J. R. Brenner, C. W. Colling, B. G. Demczyk, J. Dunning, and L. T. Thompson, Catal. Today, 15, 201 (1992) https://doi.org/10.1016/0920-5861(92)80176-N
  6. D. J. Sajkowski and S. T. Oyama, ACS Prep., Div. Petrol. Chem., 35, 233 (1990)
  7. J. C. Schlatter, S. T. Oyama, J. E. Metcalfe, and J. M. Lambert, Ind. Eng. Chem. Res., 27, 1648 (1988) https://doi.org/10.1021/ie00081a014
  8. L. Leclerq, K. Imura, S. Yoshida, T. Barbee, and M. Boudart, in Preparation of Catalysts II, ed. B. Delmon, p. 627, Elsevier, New York (1979)
  9. L. Volpe and M. Boudart, J. Phys. Chem., 90, 4874 (1986) https://doi.org/10.1021/j100411a031
  10. E. J. Markel and J. W. Van Zee, J. Catal., 126, 643 (1990) https://doi.org/10.1016/0021-9517(90)90027-H
  11. B. Dhandapani, S. Ramanathan, C. C. Yu, B. Fruhberger, J. G. Chen, and S. T. Oyama, J. Catal., 176, 61 (1998) https://doi.org/10.1006/jcat.1998.2004
  12. H. Kwon, S. Choi, and L. T. Thompson, J. Catal., 184, 236 (2000)
  13. H. Kwon, L. T. Thompson, J. Jr. Eng, and J. G. Chen, J. Catal., 190, 60 (2000) https://doi.org/10.1006/jcat.1999.2749
  14. J. Choi, J. R. Brenner, and L. T. Thompson, J. Catal. 154, 33 (1995) https://doi.org/10.1006/jcat.1995.1143
  15. S. T. Oyama, Catal. Today, 15, 179 (1992) https://doi.org/10.1016/0920-5861(92)80175-M
  16. I. Milosev, H.-H. Strehblow, and B. Navinsek, Thin Solid Films, 303, 246 (1997) https://doi.org/10.1016/S0040-6090(97)00069-2
  17. M. Hirai, Y. Ueno, T. Suzuki, and W. Jiang, Jpn. J. Appl. Phys., 40, 1052 (2001) https://doi.org/10.1143/JJAP.40.1052
  18. Japan Patent JP 02221126 (1989)
  19. T. Sato, K. Usuki. A. Okuwaki, and Y. Goto, J. Mater. Sci., 27, 3879 (1992) https://doi.org/10.1007/BF00545471
  20. M. Aguas, A. Nartowski, I. Parkin, M. MacKensi, and A. Craven, J. Mater. Chem., 8, 1875 (1998) https://doi.org/10.1039/a802149j
  21. P. Subramanya Herle, M. Hegde, N. Vasathacharya, and S. Philip, J. Solid State Chem., 134, 120 (1997) https://doi.org/10.1006/jssc.1997.7554
  22. H. Kwon, Ph. D. Dissertation, The University of Michigan, Ann Arbor, USA (1998)
  23. R. Kapoor and S. T. Oyama, J. Solid State Chem., 99, 303 (1992)
  24. H. O. Mulfinger, J. Am. Ceram. Soc., 49, 462 (1966) https://doi.org/10.1111/j.1151-2916.1966.tb13300.x
  25. C. J. Brinker, J. Am. Ceram. Soc., 65, C4 (1982)
  26. P. Subramanya Herle, M. S. Hegde, N. Y. Vasathacharya, S. Philip, M. V. Rama Rao, and T. Sripathi, J. Solid State Chem., 134, 120 (1997) https://doi.org/10.1006/jssc.1997.7554