• Title/Summary/Keyword: remaining service life

Search Result 96, Processing Time 0.025 seconds

Estimation of Remaining Service Life of Steel Highway Bridge under Actual Traffic Load (강교량의 실동피로하에서 잔존수명의 추정)

  • 용환선;정경섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.59-64
    • /
    • 1989
  • On this condition of steel bridge member having a crack, occasionaly it is improssible to measure of stress history and to extract test specimen. Under this situation, tried to estimate remaining service life from statistical data on traffic and existing results of fatigue test without measuring of stress history and fatigue test. The main results are as following (1) Stress history of simple beam estimated from Montecallo simulation method with probabilistic model of traffic can be use to estimate remaining fatigue life instead of measuring of stress history. (2) In such a case measuring of remaining fatigue life at bridge member haying a crack, influences of RMS model and RMC model on fatigue crack growth rate are not differ without difference of applied stress range. (3) Application of cut off method may be overestimate remaining fatigue life.

  • PDF

Fatigue Reliability and Remaining Fatigue Life of Existing Steel Rail-Road Bridges (강철도교의 피로신뢰성과 잔존피로수명)

  • 조효남;신재철;허상구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.11-16
    • /
    • 1989
  • This paper presents a fatigue reliability model for the reliability-based evaluation of remaining fatigue life of existing rail-road bridges. It is demonstrated that the simple fatigue reliability model based on the Weibull distribution of fatigue life can be extended by incorporating various effects due to the rate of the train-traffic increase and in-service Inspections. The paper also suggests the system fatigue reliability analysis using an approximate formulation and 2nd-order bound solutions. The application of the proposed model to existing rail-road brdiges based on field load tests shows that it may be practically used for the assessment of fatigue reliability, remaining life, and in-service inspection scheduling of existing rail-road bridges.

  • PDF

Remaining Service Life Prediction of Concrete Structures under Chloride-induced Loads (염해환경하의 콘크리트 구조물의 잔존수명 예측)

  • Song, Ha-Won;Luc, Dao Ngoc The
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1037-1040
    • /
    • 2008
  • In order to predict the remaining life of marine concrete structures under climatic loads, it is necessary to develop an analytical approach to predict the time and space dependent deterioration of concrete structures due to mainly chloride attack up to corrosion initiation and additional deterioration like cracking of cover concrete. This study aims to introduce FEM model for life-time simulation of concrete structures subjected to chloride attack. In order to consider uncertainties in materials as well as environmental parameters for the prediction, Monte Carlo Simulation is integrated in that FEM modeling for reliability-based remaining service life prediction. The paper is organized as follows: firstly general scheme for reliability-based remaining service life of concrete structures is introduced, then the FEM models for chloride penetration, corrosion product expansion and cover cracking are briefly explained, finally an example is demonstrated and the effects of localization of chloride concentration and corrosion product expansion on service life using above model are discussed.

  • PDF

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

A Prediction of Remaining Service Life of Concrete for Irrigation Structure by Measuring Carbonation (중성화 측정을 통한 콘크리트의 잔존수명 예측)

  • 이준구;박광수;신수균;김관호;윤성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.773-778
    • /
    • 2002
  • The variance characteristics of the calcium carbonate contents along to the concrete cover depth takes the prediction method of remaining service life of concrete. Calcium carbonate contents were measured by the Thermo Gravimetric/Differential Thermal Analysis method at three point, depth of 0.25cm, 0.75cm, 1.25cm from the surface of concrete. This prediction method contain some assumption that the chemical protection conferred on steel is through a passive protective oxide film which forms on steel in an environment at or above a pH of 10.5$^{4)}$ .

  • PDF

A Study on the Estimation of Economic Depreciation Rate on Industrial Property U sing Remianing Life (잔존수명을 활용한 제조설비의 경제적 감가상각률 추정방안)

  • Oh, Hyun-Seung;Cho, Jin-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.219-224
    • /
    • 2010
  • Depreciation accounting has as its main objective, the recovery of the original cost of plant investment less net salvage, over the estimated useful life of that plant. Accuracy of the whole life technique in meeting this objective depends entirely on the original estimates of service life and net salvages for an account. Where the whole life technique has been used and original estimates prove inaccurate, excessive or deficient accumulations in the depreciation reserve frequently occur. To overcome this, the remaining life technique is suggested to better match the challenges of accelerated technology and competition within the regulated environment. The flexibility of the remaining life technique will allow an even chance to provide a complete recovery of the original cost.

Remaining service life estimation of reinforced concrete buildings based on fuzzy approach

  • Cho, Hae-Chang;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kim, Ki-Hyun;Monteiro, Paulo J.M.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.879-902
    • /
    • 2015
  • The remaining service life (RSL) of buildings has been an important issue in the field of building and facility management, and its development is also one of the essential factors for achieving sustainable infrastructure. Since the estimation of RSL of buildings is heavily affected by the subjectivity of individual inspector or engineer, much effort has been placed in the development of a rational method that can estimate the RSL of existing buildings more quantitatively using objective measurement indices. Various uncertain factors contribute to the deterioration of the structural performance of buildings, and most of the common building structures are constructed not with a single structural member but with various types of structural components (e.g., beams, slabs, and columns) in multistory floors. Most existing RSL estimation methods, however, consider only an individual factor. In this study, an estimation method for RSL of concrete buildings is presented by utilizing a fuzzy theory to consider the effects of multiple influencing factors on the deterioration of durability (e.g., concrete carbonation, chloride attack, sulfate attack), as well as the current structural condition (or damage level) of buildings.

Predicting on Service Life of Concrete by Steel Corrosion (철근부식에 의한 육지 콘크리트의 수명예측)

  • 정우용;손영무;윤영수;이진용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.682-687
    • /
    • 2000
  • In this research the remaining service life of the concrete due to the steel corrosion was predicted by three cases; causing carbonation, using sea sand, using deicing salts. In case of deterioration by carbonation, effective carbonation depth, effective coverage depth and relative humidity are considered for predicting method. In case of using sea sand, predicting method is made of rust growth equation from polarization resistance method. In case of using deicing salts, predicting method is made of transformation of Fick's law. Three methods are very useful in predicting service life of concrete.

  • PDF

Evaluation of Service Life Prediction Models for Concrete Structure (I) (콘크리트 구조물의 수명예측을 위한 모델 분석 및 평가에 관한 연구 (I))

  • 김도겸;이종석;이장화;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.731-736
    • /
    • 1998
  • Deteriorations of concrete are governed by combined factors such as environmental stressors, processes and rates of deteriorations. Due to this reason, it's very difficult and important issue to predict quantitatively the service life of concrete structure. From this pont of views, the purpose of this study is to propose the approaches on the further development for predicting the remaining service life of concrete by analyzing the deteriorations mechanism and evaluating the existing models.

  • PDF

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.