• 제목/요약/키워드: reliability dependent on time

검색결과 170건 처리시간 0.021초

The Determinants of Citizens' Satisfaction of E-Government: An Empirical Study in Vietnam

  • NGUYEN, Thuy Thu;PHAN, Duc Manh;LE, Anh Ha;NGUYEN, Lan Thi Ngoc
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권8호
    • /
    • pp.519-531
    • /
    • 2020
  • This research aims to identify the determinants of e-government satisfaction in Hanoi, Vietnam, and assess their impact. To collect data, we conducted an online questionnaire with citizens living in Hanoi in a time span of five weeks. We received 1,107 responses, divided into three groups: unaware, known, but not used, and used e-government. After leveraging past studies on satisfaction in different contexts, we arrived at six external variables that are of particular relevance to e-government satisfaction (i.e., efficiency, trust, reliability, convenience, citizen support, and transparency) as well as four control variables (i.e., age, gender, education level, and Internet frequency). We then applied both SPSS 22 and STATA 2016 to process and analyze the collected data and found that, while almost all external variables are statistically significant, all four control variables are not. Apart from convenience and trust, four factors - efficiency, reliability, citizens support, transparency - are important measures of system quality, information quality, service quality and relative benefits of e-government, which in turn positively and significantly impact citizens' satisfaction with the online public services. Furthermore, the efficiency variable has the most influence on customer satisfaction, and the level of impact on the dependent variable decreases in the following order: citizen support, reliability and transparency.

자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구 (Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System)

  • 손연홍;김명성;장화섭;김송길;김용진
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Analysis of Gate-Oxide Breakdown in CMOS Combinational Logics

  • Kim, Kyung Ki
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.17-22
    • /
    • 2019
  • As CMOS technology scales down, reliability is becoming an important concern for VLSI designers. This paper analyzes gate-oxide breakdowns (i.e., the time-dependent dielectric-breakdown (TDDB) aging effect) as a reliability issue for combinational circuits with 45-nm technology. This paper shows simulation results for the noise margin, delay, and power using a single inverter-chain circuit, as well as the International Symposium on Circuits and Systems (ISCAS)'85 benchmark circuits. The delay and power variations in the presence of TDDB are also discussed in the paper. Finally, we propose a novel method to compensate for the logic failure due to dielectric breakdowns: We used a higher supply voltage and a negative ground voltage for the circuit. The proposed method was verified using the ISCAS'85 benchmark circuits.

최종관입량을 기준으로 한 합리적인 말뚝 시공관리 방안 (A new proposal for the appropriate quality control of driven piles by using set values)

  • 이명환;홍헌성;김성회;전영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 말뚝기초 학술발표회
    • /
    • pp.51-63
    • /
    • 2000
  • Because of simplicity and easiness, dynamic pile driving formulae have long been used by most of the field engineers for pile quality control purposes. Yet their reliability have been repeatedly reported unsuitable and the results can lead to significant errors. According to the research results by the authors, the two most important sources of unreliability of dynamic pile driving formulae are uncertainty in the estimation of hammer efficiency and time dependent characteristics of pile bearing capacity. Based on this finding a new method is proposed. By using the actual value of hammer efficiency the pile bearing capacity at the time of driving could be reasonably estimated. By performing restrike test sometime after pile installation, time effect coefficient could be determined. The effectiveness of the proposed method was proven in the actual construction project.

  • PDF

랜들리 및 어랑 수명분포에 의존한 소프트웨어 신뢰성 모형에 대한 신뢰도 속성 비교 연구 (A Comparative Study on Reliability Attributes for Software Reliability Model Dependent on Lindley and Erlang Life Distribution)

  • 양태진
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.469-475
    • /
    • 2017
  • 소프트웨어 개발시행 과정에서 소프트웨어 신뢰성은 매우 기본적이고 필수적인 문제 중에 하나이다. 소프트웨어 고장현상을 파악하기 위하여 비동질적인 포아송 과정에서 순간 고장률인 강도함수가 고장시간에 독립적으로 일정하거나, 증가형 혹은, 감소형 추세를 가질 수 있다. 본 논문에서는 소프트웨어 설계 과정에서 강도형태가 감소패턴을 따르는 랜들리 수명분포와 증가하다가 감소하는 어랑수명 분포를 활용한 소프트웨어 신뢰속성 모형에 대하여 신뢰도 장단점에 관한 연구를 하였다. 소프트웨어 고장현상을 파악하기 위하여 모수추정은 최우추정법을 적용하였다. 따라서, 본 논문에서는 소프트웨어 고장시간 자료를 적용하여 소프트웨어 신뢰도를 비교하고, 평가하였다. 그 결과, 랜들리 모형이 어랑분포 모형보다 신뢰도가 상승하는 것으로 나타났으나, 어랑분포 모형에서는 형상모수가 높을수록 높은 신뢰도를 나타내는 추세를 보였다. 본 논문를 통하여 소프트웨어 기획 부서에서는 특정한 수명분포와 형상모수를 활용함으로서 소프트웨어 고장분석을 활용한 소프트웨어 신뢰성 모형에 대한 신뢰성 속성을 적용한 데이터 및 기본 지식을 제공함으로서 소프트웨어 설계에 실질적인 도움을 줄 수 있다.

Multicore Real-Time Scheduling to Reduce Inter-Thread Cache Interferences

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제7권1호
    • /
    • pp.67-80
    • /
    • 2013
  • The worst-case execution time (WCET) of each real-time task in multicore processors with shared caches can be significantly affected by inter-thread cache interferences. The worst-case inter-thread cache interferences are dependent on how tasks are scheduled to run on different cores. Therefore, there is a circular dependence between real-time task scheduling, the worst-case inter-thread cache interferences, and WCET in multicore processors, which is not the case for single-core processors. To address this challenging problem, we present an offline real-time scheduling approach for multicore processors by considering the worst-case inter-thread interferences on shared L2 caches. Our scheduling approach uses a greedy heuristic to generate safe schedules while minimizing the worst-case inter-thread shared L2 cache interferences and WCET. The experimental results demonstrate that the proposed approach can reduce the utilization of the resulting schedule by about 12% on average compared to the cyclic multicore scheduling approaches in our theoretical model. Our evaluation indicates that the enhanced scheduling approach is more likely to generate feasible and safe schedules with stricter timing constraints in multicore real-time systems.

DOProC-based reliability analysis of structures

  • Janas, Petr;Krejsa, Martin;Sejnoha, Jiri;Krejsa, Vlastimil
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.413-426
    • /
    • 2017
  • Probabilistic methods are used in engineering where a computational model contains random variables. The proposed method under development: Direct Optimized Probabilistic Calculation (DOProC) is highly efficient in terms of computation time and solution accuracy and is mostly faster than in case of other standard probabilistic methods. The novelty of the DOProC lies in an optimized numerical integration that easily handles both correlated and statistically independent random variables and does not require any simulation or approximation technique. DOProC is demonstrated by a collection of deliberately selected simple examples (i) to illustrate the efficiency of individual optimization levels and (ii) to verify it against other highly regarded probabilistic methods (e.g., Monte Carlo). Efficiency and other benefits of the proposed method are grounded on a comparative case study carried out using both the DOProC and MC techniques. The algorithm has been implemented in mentioned software applications, and has been used effectively several times in solving probabilistic tasks and in probabilistic reliability assessment of structures. The article summarizes the principles of this method and demonstrates its basic possibilities on simple examples. The paper presents unpublished details of probabilistic computations based on this method, including a reliability assessment, which provides the user with the probability of failure affected by statistically dependent input random variables. The study also mentions the potential of the optimization procedures under development, including an analysis of their effectiveness on the example of the reliability assessment of a slender column.

무기체계의 상세설계 단계에 적용을 위한 한국형 정비도 예측 S/W 개발 (Development of Korean Maintainability-Prediction Software for Application to the Detailed Design Stages of Weapon Systems)

  • 권재언;김수주;허장욱
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.102-111
    • /
    • 2021
  • Maintainability is a major design parameter that includes availability as well as reliability in a RAM (reliability, availability, maintainability) analysis, and is an index that must be considered when developing a system. There is a lack of awareness of the importance of predicting and analyzing maintainability; therefore, it is dependent on past-experience data. To improve the utilization rate, maintainability must be managed as a key indicator to meet the user's requirements for failure maintenance time and to reduce life-cycle costs. To improve the maintainability-prediction accuracy in the detailed design stage, we present a maintainability-prediction method that applies Method B of the Military Standardization Handbook (MIL-HDBK-472) Procedure V, as well as a Korean maintainability-prediction software package that reflects the system complexity.

HMM-Based Transient Identification in Dynamic Process

  • Kwon, Kee-Choon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.40-46
    • /
    • 2000
  • In this paper, a transient identification based on a Hidden Markov Model (HMM) has been suggested and evaluated experimentally for the classification of transients in the dynamic process. The transient can be identified by its unique time dependent patterns related to the principal variables. The HMM, a double stochastic process, can be applied to transient identification which is a spatial and temporal classification problem under a statistical pattern recognition framework. The HMM is created for each transient from a set of training data by the maximum-likelihood estimation method. The transient identification is determined by calculating which model has the highest probability for the given test data. Several experimental tests have been performed with normalization methods, clustering algorithms, and a number of states in HMM. Several experimental tests have been performed including superimposing random noise, adding systematic error, and untrained transients. The proposed real-time transient identification system has many advantages, however, there are still a lot of problems that should be solved to apply to a real dynamic process. Further efforts are being made to improve the system performance and robustness to demonstrate reliability and accuracy to the required level.

  • PDF

Separable Monte Carlo 방법을 적용한 부식배관 신뢰도평가 (Reliability Assessment for Corroded Pipelines by Separable Monte Carlo Method)

  • 이진한;조영도;김래현
    • 한국가스학회지
    • /
    • 제19권5호
    • /
    • pp.81-86
    • /
    • 2015
  • 배관설계에 있어 스트레스에 기반한 결정론적 방법이 전통적으로 사용되어 왔다. 한편, 신뢰도기반 설계 및 평가(RBDA) 방법론은 해양 또는 원자력 구조물에 대해 적용되어 왔다. 최근 들어 배관의 한계상태법에 기반한 신뢰도에 대해 ISO 규격 즉, ISO 16708의 출간은 RDBA 방법론이 천연가스배관 설계의 최신방향 중에 하나라는 것을 보여준다. 본 논문은 부식결함을 가진 배관의 시간 의존적 파손 확률을 예측하는 절차에 대한 사례연구를 보여준다. 여기서 전통적인 부식 배관의 신뢰도를 추정하는 데 crude Monte Carlo (CMC) 법을 사용하는 대신에 separable Monte Carlo (SMC) method 적용한다. 그 결과 SMC 방법은 신뢰도 계산에 효율을 향상시키는 장점을 보여준다.