DOI QR코드

DOI QR Code

Reliability Assessment for Corroded Pipelines by Separable Monte Carlo Method

Separable Monte Carlo 방법을 적용한 부식배관 신뢰도평가

  • Lee, Jin-Han (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Jo, Young-Do (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Lae Hyun (Graduate School of Energy & Environment, Seoul National Univ. of Technology)
  • 이진한 (한국가스안전공사 가스안전연구원) ;
  • 조영도 (한국가스안전공사 가스안전연구원) ;
  • 김래현 (서울과학기술대학교 화공생명공학과)
  • Received : 2015.09.21
  • Accepted : 2015.10.23
  • Published : 2015.10.30

Abstract

A deterministic stress-based methodology has traditionally been applied in pipeline design. Meanwhile, reliability based design and assessment (RBDA) methodology has been extensively applied in offshore or nuclear structures. Lately, the release of ISO standard on reliability based limit state methods for pipelines ISO16708 indicates that the RBDA methodology is one of the newest directions of natural gas pipeline design method. This paper presents a case study of the RBDA procedure for predicting the time-dependent failure probability of pipelines with corrosion defects, where separable Monte Carlo (SMC) method is applied in the reliability estimation for corroded pipeline instead of traditional, crude Monte Carlo(CMC) Method. The result shows the SMC method take advantage of improving accuracy in reliability calculation.

배관설계에 있어 스트레스에 기반한 결정론적 방법이 전통적으로 사용되어 왔다. 한편, 신뢰도기반 설계 및 평가(RBDA) 방법론은 해양 또는 원자력 구조물에 대해 적용되어 왔다. 최근 들어 배관의 한계상태법에 기반한 신뢰도에 대해 ISO 규격 즉, ISO 16708의 출간은 RDBA 방법론이 천연가스배관 설계의 최신방향 중에 하나라는 것을 보여준다. 본 논문은 부식결함을 가진 배관의 시간 의존적 파손 확률을 예측하는 절차에 대한 사례연구를 보여준다. 여기서 전통적인 부식 배관의 신뢰도를 추정하는 데 crude Monte Carlo (CMC) 법을 사용하는 대신에 separable Monte Carlo (SMC) method 적용한다. 그 결과 SMC 방법은 신뢰도 계산에 효율을 향상시키는 장점을 보여준다.

Keywords

References

  1. Ahammed, M. & Melchers, R.E., "Reliability estimation of pressurized pipelines subject to localized corrosion defects", Int. J. Pressure Vessels and Piping, 69, 267-272, (1996) https://doi.org/10.1016/0308-0161(96)00009-9
  2. Ahammed, M., "Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects", Int. J. Pressure Vessels and Piping, 75, 321-329, (1998) https://doi.org/10.1016/S0308-0161(98)00006-4
  3. Caleyo, F.; Gonzales, J.L. & Hallen, J.M., "A study on the reliability assessment methodology for pipelines with active corrosion defects", Int. J. Pressure Vessels and Piping, 79: 77-86. (2002). https://doi.org/10.1016/S0308-0161(01)00124-7
  4. Lee, S-M; Chang, Y-S; Choi, J-B & Kim, Y-J., "Probabilistic Integrity Assessment of Corroded Gas Pipelines", J. Pressure Vessel Technology, 128, 547-555, (2006) https://doi.org/10.1115/1.2349566
  5. Santosh, G.V; Shrivastava, O.P.; Saraf, R.K.; Ghosh, A.K. & Kushwaha, H.S., "Reliability analysis of pipelines carrying H2S for risk based inspection of heavy water plants", Reliability Engineering and System Safety, 91, 163-170, (2006) https://doi.org/10.1016/j.ress.2004.11.021
  6. Li, S.-X; Yu, S-R; Zeng, H-L; Li, J-H & Liang, R., "Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model", J. of Petroleum Science and Engineering, 65, 162-166, (2009a) https://doi.org/10.1016/j.petrol.2008.12.023
  7. Li, S.-X; Zeng, H-L; Yu, S-R; Zhai, X.; Chen, S-P; Liang, R.& Yu, L., "A method for probabilistic analysis for steel pipeline with correlated corrosion defects", Corrosion Science, 51, 3050-3056, (2009b) https://doi.org/10.1016/j.corsci.2009.08.033
  8. Pandey, M.D., "Probabilistic models for condition assessment of oil and gas pipelines", NDT &E International, 31(5), 349-358, (1998) https://doi.org/10.1016/S0963-8695(98)00003-6
  9. Zhou, W., "Reliability Evaluation of Corroding Pipelines Considering Multiple Failure Modes and Time-Dependent Internal Pressure", J. Infrastructure Systems, 17(4), 216-224, (2011) https://doi.org/10.1061/(ASCE)IS.1943-555X.0000063
  10. DNV, "Corroded pipelines", Recommended Practice DNV-RP-F101 (1999)
  11. ISO 16708, "Petroleum and natural gas industries - Pipeline transportation systems - Reliability- based limit state methods", International Organization for Standardization, (2006)
  12. CSA Z662-07 "Oil and gas pipeline systems", Canadian Standards Association, (2007)
  13. Jin-Han Lee, et al, "Development of Risk Assessment Techniques for City-gas Pipeline II - Corrosion Analysis", J. of the Korean Institute of Gas, (2003)
  14. ANSI/ASME B31G, "Manual for Determining the Remaining Strength of Corroded Pipelines", American Society of Mechanical Engineers, (2012)
  15. Jin Han Lee, Young Seob Kim, Lae Hyun Kim, "A Simplified Method for Predicting Failure Probability of Pipelines with Corrosion Defects", J. of the Korean Institute of Gas, (2010)
  16. Zhou, J., Rothwell, B., Nessim, M., Zhou, W., "Reliability-Based Design and Assessment Standards for Onshore Natural Gas Transmission Pipelines", J. Pressure Vessel Technology, 131, 031702, (2009) https://doi.org/10.1115/1.2902281
  17. Teixeira, A.P., Guedes Soares, C., Netto, T.A., Estefen, S.F., "Reliability of pipelines with corrosion defects", International Journal of Pressure Vessels and Piping, 85, 228-237 (2008) https://doi.org/10.1016/j.ijpvp.2007.09.002
  18. Ravishankar, B., et al., "Separable Sampling of the Limit State for Accurate Monte Carlo Simulation", 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA: Palm Springs, California, (2009)
  19. Nessim, M., Zhou, W. Zhou, J., Rothwell, B., "Target Reliability Levels for Design and Assessment of Onshore Natural Gas Pipelines", J. Pressure Vessel Technology, 131, 061701-1, (2009) https://doi.org/10.1115/1.3110017
  20. Smarslok, B., Haftka R., Kim, N., 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, (2006)