• Title/Summary/Keyword: reliability block diagram

Search Result 52, Processing Time 0.036 seconds

A Study on HAUSAT-1 Satellite Fault-Tolerant System Architecture Design

  • Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.37-50
    • /
    • 2003
  • A next generation small satellite HAUSAT-1, the first picosatellite developed in Korea, is being developed as one of the international CubeSat program by Space System Research Lab. of Hankuk Aviation University. A fault-tolerant incremental design methodology has been addressed in this paper. In this study, the effect of system redundancy on reliability was in details analyzed in accordance with the implementation of fault-tolerant system. Four different system recovery levels are proposed for HAUSAT-1 fault-tolerant system optimization. As a result, the HAUSAT-1 fault-tolerant system architecture design and reliability analysis has acquired about 11% reliability improvement.

Reliability Analysis of k-out-of-n System Using Reliability Path (신뢰도 경로를 이용한 k-out-of-n 시스템 신뢰도 분석)

  • Lee, Heon Seok;Yang, Jae Mo;Yoo, Byungtae;Park, Chulhwan;Kim, Deaheum;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Large scale systems, the facilities for the production of power, gas and chemical, have the complex structures. Most systems require the high reliability for the improvement of process efficiency, but it is difficult to analyze the reliability of processes with complex structures. In this study, we investigated reliability path of chemical process with k-out-of-n system by reliability block diagram(RBD) and calculated the reliability of process through the failure enumeration method of reliability path. This method should help in analyzing the reliability of k-out-of-n system.

Reliability software design techniques of the Train Control and Monitoring System(TCMS) for the Standard type K-EMU (한국형 표준전동차 종합제어장치(TCMS)의 신뢰성 소프트웨어 개발 기술)

  • 한성호;안태기;이수길;이관섭;최규형
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.147-153
    • /
    • 2000
  • The train control and monitoring system (TCMS) is an on board computer system in railway vehicles performing the control, supervisory and diagnostic functions of the complete train system. This system replaces a lot of hard-wired relays and minimizes the necessary vehicle wiring thus increasing the reliability of the train. It is also one of more important equipment on vehicle to implement much higher safety and reliability train system. We studied a software design technique of TCMS using a CASE tool that is a kind of safety critical software engineering tool (SCADE). This tool has mainly four functions such as the graphical editor, the document maker, tile automatically code generator, and the test simulator. The several functions of TCMS are implemented in this software easily programmed using a functional block diagram and a graphic programming language. We applied to automatically generated TCMS modules on the SCADE each functional block for the Standard type EMU in Korea. We performed the combination test using TCMS simulator and the running test in Seoul subway 7 Line. We proved that this technique is more useful for the software design of TCMS in urban transit

  • PDF

A Study on Validation of OFP for UAV using Auto Code Generation (자동 코드생성을 이용한 무인기용 OFP의 검증에 관한 연구)

  • Cho, Sang-Ook;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.359-366
    • /
    • 2009
  • MATLAB Autocode generation is a feature that converts a block diagram model in Simulink to a c program. Utilizing this function makes MATLAB/Simulink an integrated developing environment, from controller design to implementation. It can reduce development cost and time significantly. However, this automated process requires high reliability on the software, especially the original Simulink block diagram model. And thus, the verification of the codes becomes important. In this study, a UAV flight program which is generated with Simulink is validated and modified according to DO-178B. As a result of applying the procedures, the final program not only satisfied the functional requirement but is also verified with structural point of view with Decision Coverage 93%, Condition Coverage 95% and MC/DC 90%.

Development of a Simulation Model based on CAN Data for Small Electric Vehicle (소형 전기자동차 CAN 데이터 기반의 시뮬레이션 모델 개발)

  • Lee, Hongjin;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2022
  • Recently, major developed countries have strengthened automobile fuel efficiency regulations and carbon dioxide emission allowance standards to curb climate change caused by global warming worldwide. Accordingly, research and manufacturing on electric vehicles that do not emit pollutants during actual driving on the road are being conducted. Several automobile companies are producing and testing electric vehicles to commercialize them, but it takes a lot of manpower and time to test and evaluate mass-produced electric vehicles with driving mileage of more than 300km on a per-charge. Therefore, in order to reduce this, a simulation model was developed in this study. This study used vehicle information and MCT speed profile of small electric vehicle as basic data. It was developed by applying Simulink, which models the system in a block diagram method using MATLAB software. Based on the vehicle dynamics, the simulation model consisted of major components of electric vehicles such as motor, battery, wheel/tire, brake, and acceleration. Through the development model, the amount of change in battery SOC and the mileage during driving were calculated. For verification, battery SOC data and vehicle speed data were compared and analyzed using CAN communication during the chassis dynamometer test. In addition, the reliability of the simulation model was confirmed through an analysis of the correlation between the result data and the data acquired through CAN communication.

Decision of Maintenance Priority Order for Substation Facility through Structural Importance and Fault Analysis (변전설비의 구조적 중요도와 고장 분석을 통한 유지보수 우선순위 선정)

  • Lee, Sung-Hun;Lee, Yun-Seong;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • Reliability Centered Maintenance(RCM) is one of most widely used methods in the modern power system to schedule a maintenance cycle and determine the priority of inspection. A precedence study for the new structure of rearranged system should be performed due to introduction of additional installation. This paper proposes a new method to evaluate the priority of maintenance and inspection of the power system facilities. In order to calculate that risk index, it is required that the reliability block diagram should be analyzed for the power system. Additionally, a fault cause analysis is also performed through the event-tree analysis.

THE RELIABILITY PREDICTION OF CONTROL CABINET OF CONTROL ROD CONTROL SYSTEM (제어봉 제어 시스템의 제어함에 대한 RBD 분석)

  • Jung, Hae-Won;Sur, Jung-Suk;Yook, Sim-Kyun;Nam, Jung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2055-2057
    • /
    • 2003
  • This paper describes the results of RBD(Reliability Block Diagram) analysis of control rod control system, which is being developed as part of KNICS project. The results of RBD indicate unavailability of control cabinet for control rod control system. A purpose of RBB is to evaluate unavailability of control cabinet, identify the design drawbacks of control cabinet, and propose design improvement to a designer to help design the more reliable control rod control system. This RBD defines the logical interaction of failure within a system.

  • PDF

A Study on a Simulation Model to Analyze the Availability of a SoS (복합시스템 가용도 분석을 위한 시뮬레이션 모델 연구)

  • Kim, Hye-Lyeong;Kim, Ui-Hwan;Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1049-1057
    • /
    • 2011
  • Today, most weapon systems operate as component systems of SoS(System of Systems) and they produce synergy effects in the battle field by interoperating. In addition, the acquisition issues on weapon systems have expanded into SoS context including sustainment analysis. Availability is the sustainment KPP(Key Performance Parameter) of weapon systems. In this paper, a simulation model is proposed to analyze the availability of SoS. The simulation model consists of 5 modules: Mission and Task, System, System RBD, Maintenance system and a simulation engine. Then it was implemented and applied to a SoS. As a result of the application, the simulation model could be applied for analyzing the availability of the SoS and provided information about critical tasks and risky component systems to complete the given mission of the SoS.

A Methodology for Constructing Function Tree & Fault Tree in Reliability Analysis (신뢰성 분석을 위한 Function Tree 및 Fault Tree 구성 방법에 관한 연구)

  • Ha, Sung-Do;Lee, Eon-Kyung;Kang, Dal-Mo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.333-338
    • /
    • 2001
  • Fault tree is a widely used methodology for analyzing product reliability. The fault trees are usually constructed using the experiences of expert reliability engineers in top-down approaches and have different structures according to each expert's subjectivity. In this work it is tried to find a general method for the fault tree construction based on the function tree that is the result of product function deployment. Based on the function tree, the method has the advantage of resulting an objective fault tree since the faults are defined as the opposite concept of functions. The fault tree construction of this work consists of the following steps: 1) definition of product primary function with the viewpoints of product operation and configuration, 2) construction of functional relation chart using a grouping algorithm, 3) abstraction of functional block diagram according to operation sequences and configuration of a product, 4) construction of function tree for each viewpoint, and 5) construction of fault tree by matching the function tree and simplification of the result.

  • PDF

Reliability Optimization of Urban Transit Brake System For Efficient Maintenance (효율적 유지보수를 위한 도시철도 전동차 브레이크의 시스템 신뢰도 최적화)

  • Bae, Chul-Ho;Kim, Hyun-Jun;Lee, Jung-Hwan;Kim, Se-Hoon;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.26-35
    • /
    • 2007
  • The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.