• 제목/요약/키워드: relaxor ferroelectric ceramics

검색결과 38건 처리시간 0.026초

Effect of Sintering Temperature on the Dielectric Property of Lead Magnesium Niobate-Lead Titanate Ceramics

  • Hwang, Hak-In;Jung, Jong-Man;Park, Joon-Shik
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.286-291
    • /
    • 1998
  • Dielectric properties of $Pb(Mg_{1/3}Nb_{2/3})O_{3}-PbTiO_{3}$, ceramics prepared by the columbite precursor method have been investigated as a function of the sintering temperature in the range of 1000∼$1250^{\circ}C$. The $Pb(Mg_{1/3}Nb_{2/3})O_{3}-PbTiO_{3}$ ceramics show typical relaxor ferroelectric behavior. As the sintering temperature increased, the dielectric constant increased and the phase transition temperature shifted to lower temperature. The TCK(temperature coefficient of dielectric constant) and VRK (variation rate of dielectric constant) increased with increasing sintering temperature. The $Pb(Mg_{1/3}Nb_{2/3})O_{3}-PbTiO_{3}$ compositions sintered at $1250^{\circ}C$ appear to be suitable for ferroelectric bolometer.

  • PDF

Dielectric and Ferroelectric Properties of Nb Doped BNT-Based Relaxor Ferroelectrics

  • Maqbool, Adnan;Hussain, Ali;Malik, Rizwan Ahmed;Zaman, Arif;Song, Tae Kwon;Kim, Won-Jeong;Kim, Myong-Ho
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.317-321
    • /
    • 2015
  • The effects of Nb doping on the crystal structure, microstructure, and dielectric ferroelectric and piezoelectric properties of $(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{(1-x)}Nb_xO_3-0.01SrZrO_3$ (BNBTNb-SZ, with ${\chi}=0$, 0.01 and 0.02) ceramics have been investigated. X-ray diffraction patterns revealed that all ceramics have a pure perovskite structure with tetragonal symmetry. The grain size of the ceramics slightly decreased and a change in grain morphology from square to spherical shape was observed in the Nb-doped samples. The maximum dielectric constant temperature ($T_m$) increases with increasing amount of Nb; however, ferroelectric-relaxor transition temperature ($T_{F-R}$) and maximum dielectric constant (${\varepsilon}_m$) values decrease gradually. Nb addition disrupted the polarization hysteresis loops of the BNBT-SZ ceramics by leading a reduction in the remnant polarization coercive field and piezoelectric constant.

강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰 (Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary)

  • 임성빈;부상돈;정창규
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Perovskite PMT-PT계의 강유전 특성 및 확산상전이 (Ferroelectric Properties and DPT in the Perovskite PMT-PT System)

  • 김연중
    • 한국진공학회지
    • /
    • 제17권2호
    • /
    • pp.122-129
    • /
    • 2008
  • Perovskite 구조의 PMT-PT계 고용체를 precursor columbite를 이용한 산화물 혼합법으로 제작하여 결정립의 성장과 상전이 현상을 분석하였다. $1250^{\circ}C$에서 4시간 유지하여 제작한 시편의 소결밀도는 이론밀도의 97% 이상이었고, 완전한 perovskite phase를 형성하였다. 치밀하게 소결 처리된 시편의 결정립의 크기는 $6\sim8{\mu}m$로 측정되었다. PMT-PT 고용체계는 복합 강유전 고용체의 전형적인 P-E 이력현상과 강한 진동수 분산특성이 관찰되었다. 특히 PMT가 70% 이하인 조성은 상전이 온도 이상에서도 자발분극이 완전히 소멸하지 않는 relaxor 특성을 보였으며, 유전상수와 유전손실의 큰 진동수 의존성을 보였다.

Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동 (Ferroelectric to Relaxor Transition Behavior in Lead-Free Ternary (Bi0.5Na0.5)TiO3-BiFeO3-SrTiO3 Piezoceramics)

  • 이상섭;이창헌;즈엉 짱 안;웬 호앙 티엔 코이;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2021
  • This study investigated the structural, dielectric, ferroelectric, and strain properties of (0.98-x)Bi1/2Na1/2TiO3-0.02BiFeO3-xSrTiO3 (BNT-BF-100xST, x=0.20, 0.22, 0.24, 0.26, and 0.28). All samples were successfully synthesized using the conventional solid-state reaction method and sintered at 1,175℃ for 2 h. The average grain size of the BNT-BF-100x ceramics decreased with increasing ST content. Furthermore, we observed that the ferroelectric- relaxor transition temperature (TF-R) decreased with increasing ST content, which eventually vanished in the BNT-BF-24ST ceramics. The results indicated that a ferroelectric to relaxor phase transition could be induced by ST modification. Consequently, a large electromechanical strain of 633 pm/V at 4 kV/mm was observed for the BNT-BF-26ST ceramics. These results imply that our materials have the competitive advantage of larger strain under lower operating field conditions compared with other BNT-based lead-free piezoelectric ceramics. We expect that BNT-BF-ST lead-free piezoelectric ceramics are promising candidates as a novel ternary BNT-based system and can find potential applications in actuators.

전계 인가에 따른 PLZT 강유전체의 유전특성 및 전기열량 효과 (Dielectric Properties and Electrocaloric Effects of PLZT Ferroelectric Ceramics by Applying Electric Fields)

  • 김유석;류주현;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제29권3호
    • /
    • pp.164-167
    • /
    • 2016
  • In this study, in order to develop relaxor ferroelectric ceramics for refrigeration device application with large electrocaloric effect, PLZT(8/65/35) composition was fabricated using conventional solid-state method. The Curi temperature of this composition PLZT ceramics was $230^{\circ}C$, and the P-E hysteresis loops of the PLZT ceramics as a fuction of temperature became slim by degrees with higher temperatures. The maximum value of ${\Delta}T$ of $0.243^{\circ}C$ in ambient temperature of $215^{\circ}C$ with 30 kV/cm was appeared. It is considered that PLZT ceramics possess the possibility of refrigeration device application.

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics

  • Han, Hyoung-Su;Hong, In-Ki;Kong, Young-Min;Lee, Jae-Shin;Jo, Wook
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.145-149
    • /
    • 2016
  • $(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}(Ti_{1-x}Nb_x)O_3$ (BNBTxNb) ceramics were investigated in terms of the crystal structure as well as the ferroelectric, dielectric, and piezoelectric properties. While little change was observed in the microstructure except for a slight decrease in the average grain size, a significant change was noticed in the temperature dependence of dielectric and piezoelectric properties. It was shown that the property changes are closely related to the downward shift in the position of the ferroelectric-to-relaxor transition temperature with increasing amount of Nb doping. A special emphasis is put on the fact that Nb doping is so effective at decreasing the ferroelectric-to-relaxor transition temperature that even at no more than 2 at.% Nb addition, the transition temperature was already brought down slightly below room temperature, resulting in the birth of a large strain at 0.46 %, equivalent to $S_{max}/E_{max}=767pm/V$.

Growth of lead-based functional crystals by the vertical bridgman method

  • Xu Jiayue
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Some lead-based crystals show excellent ferroelectric, piezoelectric or scintillation properties and have attracted much attention in recent years. However, the erosion of the high temperature solution on platinum crucible and the evaporation of PbO component are the main problems often encountered during the crystal growth. In this paper, we reported recent progress on the Bridgman growth of lead-based functional crystals, such as novel relaxor ferroelectric crystals (PZNT and PMNT), scintillation crystals $(PbWO_4,\;PbF_2\;and\;PbClF)$ and piezoelectric crystals $(Pb_5Ge_3O_{11}\;and\;Pb_2KNb_5O_{15}),$ in Shanghai Institute of Ceramics, Chinese Academy of Sciences. The vertical Bridgman method has been modified to grow PZNT crystals from high temperature solution and as-grown crystals have been characterized. Large size lead-based scintillators, $PbWO_4\;and\;PbF_2$ crystals, have been mass-produced by the vertical Bridgman method in the multi-crucible fumace. These crystals have been supplied to CERN and other laboratories for high-energy physics experiments. The Bridgman growth of piezoelectric crystals $Pb_5Ge_3O_{11}\;and\;Pb_2KNb_5O_{15}$ are discussed also.

$\textrm{0.9Pb}\textrm({Mg}_{1/3}\textrm{Nb}_{2/3})\textrm{O}_3$-$\textrm{0.1PbTiO}_3$계 강유전체에서 전계인가에 따른 분극 및 변위의 상관관계 (Correlations between the Polarization and Strain Induced by Electric field in $\textrm{0.9Pb}\textrm({Mg}_{1/3}\textrm{Nb}_{2/3})\textrm{O}_3$-$\textrm{0.1PbTiO}_3$ Relaxor Ferroelectrics)

  • 박재환;박재관;박순자
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.81-85
    • /
    • 1999
  • Polarization and strain induced by unipolar electric field (P\ulcorner, S\ulcorner), those induced by bipolar electric field (P, S) and remanent polarization (P\ulcorner) were investigated in 0.9Pb(Mg\ulcornerNb\ulcorner)O$_3$-$0.1PbTiO_3$relaxor ferroelectric ceramics in the temperature range of $-50^{\circ}C$~$90^{\circ}C$. From the temperature dependence of polarization and strain, the transition from predominantly paraelectric (electrostrictive) to partially ferroelectric (piezoelectric) is visualized. Under the given temperature, the P\ulcorner/P\ulcorner is always larger than the S\ulcorner/S\ulcorner and the difference between them becomes larger ass the temperature decrease. The S\ulcorner/P\ulcorner increases as the temperature decreased below phase transition temperature. It was suggested that these experimental results might be explained with a simple rigid ion model concentrating on BO\ulcorner octahedron.

  • PDF