Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.2.145

Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics  

Han, Hyoung-Su (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Hong, In-Ki (School of Materials Science and Engineering, University of Ulsan)
Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Abstract
$(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}(Ti_{1-x}Nb_x)O_3$ (BNBTxNb) ceramics were investigated in terms of the crystal structure as well as the ferroelectric, dielectric, and piezoelectric properties. While little change was observed in the microstructure except for a slight decrease in the average grain size, a significant change was noticed in the temperature dependence of dielectric and piezoelectric properties. It was shown that the property changes are closely related to the downward shift in the position of the ferroelectric-to-relaxor transition temperature with increasing amount of Nb doping. A special emphasis is put on the fact that Nb doping is so effective at decreasing the ferroelectric-to-relaxor transition temperature that even at no more than 2 at.% Nb addition, the transition temperature was already brought down slightly below room temperature, resulting in the birth of a large strain at 0.46 %, equivalent to $S_{max}/E_{max}=767pm/V$.
Keywords
Lead-free piezo ceramics; Relaxor ferroelectrics; Electromechanical strain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5}$ $TiO_3$-$BaTiO_3$-$K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91 [11] 112906 (2007).   DOI
2 K.-N. Pham, A. Hussain, C.-W. Ahn, W. Kim, S. J. Jeong, and J.-S. Lee, "Giant Strain in Nb-Doped $Bi_{0.5}$ $(Na_{0.82}K_{0.18})_{0.5}$ $TiO_3$ Lead-Free Electromechanical Ceramics," Mater. Lett., 64 [20] 2219-22 (2010).   DOI
3 K.-N. Pham, H. B. Lee, H.-S. Han, J.-K. Kang, J.-S. Lee, A. Ullah, C.-W. Ahn, and I. W. Kim, "Dielectric, Ferroelectric, and Piezoelectric Properties of Nb-Substituted $Bi_{1/2}$$(Na_{0.82}K_{0.18})_{1/2}$ $TiO_3$ Lead-Free Ceramics," J. Kor. Phys. Soc., 60 [2] 207-11 (2012).   DOI
4 A. Ullah, R. A. Malik, A. Ullah, D. S. Lee, S. J. Jeong, J.-S. Lee, I. W. Kim, and C.-W. Ahn, "Electric-Field-Induced Phase Transition and Large Strain in Lead-Free Nb-Doped BNKT-BST Ceramics," J. Eur. Ceram. Soc., 34 [1] 29-35 (2014).   DOI
5 R. A. Malik, J.-K. Kang, A. Hussain, C.-W. Ahn, H.-S. Han, and J.-S. Lee, "High Strain in Lead-Free Nb-Doped $Bi_{1/2}(Na_{0.84}K_{0.16})_{1/2}$ $TiO_3$-$SrTiO_3$ Incipient Piezoelectric Ceramics," Appl. Phys. Express, 7 [6] 061502 (2014).   DOI
6 K. T. Lee, J. S. Park, J. H. Cho, Y. H. Jeong, J. H. Paik, and J. S. Yun, "The Study on the Phase Transition and Piezoelectric Properties of $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}$$TiO_3$-$LaMnO_3$ Leadfree Piezoelectric Ceramics," J. Korean Ceram. Soc., 52 [4] 237-42 (2015).   DOI
7 W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in ($K_{0.5}Na_{0.5}$)$NbO_3$-Modified ($Bi_{0.5}Na_{0.5}$)$TiO_3$-$BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009).   DOI
8 W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead Free ($Bi_{1/2}Na_{1/2}$)$TiO_3$-6mol% $BaTiO_3$," J. Appl. Phys., 110 [7] 074106 (2011).   DOI
9 A. Glazounov, A. Tagantsev, and A. J. Bell, "Evidence for Domain-Type Dynamics in the Ergodic Phase of the $PbMg_{1/3}Nb_{2/3}O_3$ Relaxor Ferroelectric," Phys. Rev. B, 53 [17] 11281-84 (1996).   DOI
10 A. J. Bell, "Calculations of Dielectric Properties from the Superparaelectric Model of Relaxors," J. Phys. Condens. Matter, 5 [46], 8773 (1993).   DOI
11 W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O. J. Kwon, C. Park, H.-H. Seo, J.-S. Lee, E. Erdem, R.-A. Eichel, and J. Rodel, "CuO as a Sintering Additive for ($Bi_{1/2}Na_{1/2}$)$TiO_3$-$BaTiO_3$-($K_{0.5}Na_{0.5}$)$NbO_3$ Lead-Free Piezoceramics," J. Eur. Ceram. Soc., 31 [12] 2107-17 (2011).   DOI
12 D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, "Freezing of the Polarization Fluctuations in Lead Magnesium Niobate," J. Appl. Phys., 68 2916-21 (1990).   DOI
13 K. Wang, A. Hussain, W. Jo, and J. Rodel, "Temperature-Dependent Properties of ($Bi_{1/2}Na_{1/2}$)$TiO_3$-($Bi_{1/2}K_{1/2}$)$TiO_3$-$SrTiO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 95 [7] 2241-47 (2012).   DOI
14 F. D. Morrison, D. C. Sinclair, and A. R. West, "Electrical and Structural Characteristics of Lanthanum-Doped Barium Titanate Ceramics," J. Appl. Phys., 86 [11] 6355-66 (1999).   DOI
15 H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. W. Kim, K.-K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}$ $TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013).   DOI
16 H.-S. Han, W. Jo, J. Rodel, I.-K. Hong, W. P. Tai, and J.-S. Lee, "Coexistence of Ergodicity and Nonergodicity in $LaFeO_3$-Modified $Bi_{1/2}(Na_{0.78}K_{0.22})_{1/2}$ $TiO_3$ Relaxors," J. Phys. Condens. Matter., 24 [36] 365901 (2012).   DOI
17 V. Westphal, W. Kleemann, and M. Glinchuk, "Diffuse Phase Transitions and Random-Field-Induced Domain States of the "Relaxor" Ferroelectric Pb($Mg_{1/3}Nb_{2/3}$)$O_3$," Phys. Rev. lett., 68 [6] 847-50 (1992).   DOI
18 F. D. Morrison, D. C. Sinclair, and A. R. West, "An Alternative Explanation for the Origin of the Resistivity Anomaly in La-Doped $BaTiO_3$," J. Am. Ceram. Soc., 84 [2] 474-76 (2001).   DOI
19 F. D. Morrison, D. C. Sinclair, and A. R. West, "Doping Mechanisms and Electrical Properties of La-Doped $BaTiO_3$ Ceramics," Int. J. Inorg. Mater., 3 [8], 1205-10 (2001).   DOI
20 C. L. Freeman, J. A. Dawson, H.-R. Chen, L. Ben, J. H. Harding, F. D. Morrison, D. C. Sinclair, and A. R. West, "Energetics of Donor-Doping, Metal Vacancies, and Oxygen-Loss in A-Site Rare-Earth-Doped $BaTiO_3$," Adv. Func. Mater., 23 [31] 3925-28 (2013).   DOI
21 C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C.-W. Ahn, and W. Jo, "Lead-Free Piezoceramics-Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016).   DOI
22 J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009).   DOI
23 J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015).   DOI
24 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications-Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012).   DOI
25 T. Takenaka, K.-I. Maruyama, and K. Sakata, "($Bi_{1/2}Na_{1/2}$)$TiO_3$-$BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 [9S] 2236-39 (1991).   DOI
26 A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and Piezoelectric Properties of ($Bi_{0.5}Na_{0.5}$)$TiO_3$-($Bi_{0.5}K_{0.5}$)$TiO_3$ Systems," Jpn. J. Appl. Phys., 38 [9S] 5564-67 (1999).   DOI