• 제목/요약/키워드: relative navigation

검색결과 352건 처리시간 0.026초

Relative Navigation with Intermittent Laser-based Measurement for Spacecraft Formation Flying

  • Lee, Jongwoo;Park, Sang-Young;Kang, Dae-Eun
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권3호
    • /
    • pp.163-173
    • /
    • 2018
  • This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter (LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based measurements for spacecraft formation flying.

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

  • Oh, Hyungjik;Park, Han-Earl;Lee, Kwangwon;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권1호
    • /
    • pp.45-54
    • /
    • 2016
  • This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

Real-Time Relative Navigation with Integer Ambiguity

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.34.3-34.3
    • /
    • 2008
  • Relative navigation system is presented using measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide real-time relative navigation results as well as absolute navigation results for two formation flying satellites separated about 1km in low earth orbit. To improve the performance, more accurate dynamic model and modified relative measurement model are developed. This modified method prevents non-linearity of the measurement model from degrading precision by applying linearization about the states from absolute navigation algorithm not about a priori states. Furthermore, absolute states are obtained using ion-free GRAPHIC pseudo-ranges and precise relative states are provided using double differential carrier-phase data based on Extended Kalman Filter. The software-based simulation is performed and achieved meter-level precision for absolute navigation and millimeter-level precision for relative navigation. The absolute and relative accuracies at steady state are about 0.77m and 4mm respectively (3D, r.m.s.). In addition, Integer ambiguity algorithm (LAMBDA method) improves simulation performances.

  • PDF

한국형전술데이터링크(Link-K) 기반 상대항법 시스템의 시뮬레이터 설계 및 성능분석 (Simulator Design and Performance Analysis of Link-K Based Relative Navigation System)

  • 이주현;이진혁;최헌호;최효기;박찬식;이상정;이승찬
    • 한국항행학회논문지
    • /
    • 제20권6호
    • /
    • pp.528-538
    • /
    • 2016
  • 본 논문에서는 한국형 전술데이터링크 기반의 상대항법 운용을 위해 확장 칼만필터 기반의 상대항법 알고리즘을 적용한 항법 시스템을 제안하였다. 한국형 전술데이터링크는 한국군 합동작전 수행능력 향상을 위해 Link-16을 기반으로 설계된 전술데이터 링크로 작전수행 및 표적재원 등의 정보를 다루고 있다. 한국형 전술데이터링크의 통신 채널에서 위치정보를 포함하는 PPLI 메시지와 터미널로부터 산출 가능한 TOA 측정치를 활용하여 항법 백업 시스템으로 운용이 가능하다. 본 논문에서는 제안한 한국형 전술데이터링크 기반의 상대항법 시스템의운용 가능성 및 오차요소에 따른 성능분석을 수행하였으며, 이를 위해 소프트웨어 기반의 상대항법 시뮬레이션 플랫폼을 설계하여 다양한 환경에서 추정 성능을 분석하였다.

상대항법 성능 분석 플랫폼 개발 및 이를 이용한 성능 개선 (Implementation of a Performance Evaluation Platform for Relative Navigation and Its Application to Performance Improvements)

  • 최헌호;심우성;조성룡;한영훈;박찬식;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.426-432
    • /
    • 2012
  • The positions of vessels in JTIDS where each vessel broadcasts its position, can be found using the relative navigation method. Besides positioning, the relative navigation could be adopted for identification friend or foe, tracking targets, monitoring battle field and etc. In this paper, we have explained the fundamental operation and technical structure for the relative navigation and implemented the simulation platform to evaluate the basic function and performance of the system in arbitrary environment. Using platform, the availability of relative navigation within the group network and the characteristic of the algorithm for position prediction was verified. Based on the simulation result, it was verified that EKF based navigation algorithm could produce great initial error and need quite convergence time. To improve the performance, we proposed a new navigation algorithm which uses the minimum norm estimation algorithm until the EKF converges. The simulation results reveal the relative navigation can be effectively used in the formation flight and collision avoidance system.

Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

  • Lee, Kwangwon;Oh, Hyungjik;Park, Han-Earl;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.387-393
    • /
    • 2015
  • This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than $0.001^{\circ}$ at relative distances greater than 30 km.

A Performance Index for Time Slot Allocation in Link-16 Relative Navigation System

  • Lee, Jin Hyuk;Lee, Ju Hyun;Noh, Jae Hee;Lim, Deok Won;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권3호
    • /
    • pp.117-123
    • /
    • 2017
  • In this paper, we propose a performance index that can compare the position estimation performance according to the time slot allocation order, which is superior in the position estimation performance in the operation of the Link-16 based relative navigation system. In order to verify the validity of the performance index, a software-based Link-16 relative navigation system performance analysis platform composed of a signal generator, a signal reception and navigation algorithm execution unit, and a performance analysis unit was designed. Using the designed software platform, we analyzed the relationship between proposed performance index and position estimation performance according to time slot allocation order in the same position reference (PR) arrangement. The performance index of the proposed time slot allocation is expected to be utilized not only for the Link-16 system, but also for the Time Division Multiple Access (TDMA)-based navigation system.