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This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) 
measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of 
relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical 
coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range 
measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements 
might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between 
spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing 
the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed 
algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the 
accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.
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1. INTRODUCTION

The relative navigation algorithm plays a key role in 

implementing spacecraft formation flying, since the 

accuracy of the navigation solution is critically related to 

mission specification. The accurate navigation solutions 

allow us to operate challenging missions such as precise 

measurements of Earth’s gravity field, detection of 

gravitational waves, and 3-dimensional mapping. Thus, 

various approaches to relative navigation have been 

developed for about a decade, and are generally based 

on the Global Positioning System (GPS) measurements. 

Montenbruck et al. (2002) suggested a kinematic navigation 

algorithm for relative positioning using single differences 

of smoothed pseudo-range measurements. Kroes et al. 

(2005) developed a real-time navigation algorithm to 

estimate relative states via the Extended Kalman Filter 

(EKF) using single differences of pseudo-range and carrier-

phase measurements with the Least squares AMBiguity 

Decorrelation Adjustment (LAMBDA), and it was validated 

in the Gravity Recovery And Climate Experiment (GRACE) 

mission. Leung and Montenbruck (2005) designed a 

navigation system to estimate absolute and relative states 

of multiple formation flying satellites via multiple Kalman 

filters. Ardaens et al. (2010) presented flight results of 

relative GPS-based navigation for the PRISMA mission. Park 

et al. (2010) and Park et al. (2013) validated a GPS-based 

navigation algorithm through a Hardware-In-the-Loop 

(HIL) testbed including GPS signal generators and receivers.

Recently, laser instruments have attracted much 

attention for space missions with scientific goals, since they 

are geared toward precisely measuring distances between 

two objects. Several conceptual system designs using laser 

instruments in space missions have been proposed, such 
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as the Laser Interferometer Space Antenna (LISA) and 

GRACE follow-on mission (Shaddock 2008; Sheard et al. 

2012). This attention has also led to the development of a 

precise navigation algorithm based on laser measurements 

only. Wang et al. (2011) proposed an adaptive Huber 

filter algorithm for a laser radar navigation system in 

formation flying. Jung et al. (2012) formulated a relative 

navigation algorithm via EKF based on laser ranging. 

These approaches are capable of precisely estimating 

relative states when spacecraft are closed to one another, 

but they require obtaining azimuth/elevation angles 

representing the orientation of the relative position vector 

(i.e., the direction in which the laser is pointing). Since the 

angular information inherently depends on the accuracy of 

spacecraft attitude estimation, these approaches might yield 

an inaccurate solution in large-scale formation flying, which 

involves baselines of tens to hundreds of kilometers, even 

with reasonable attitude estimation. In the case of attitude 

estimation, even though a spacecraft has high-accuracy 

sensors for attitude determination, small spacecraft might 

be unable to load highly accurate sensors covering all Field 

of View (FOV) because of its dimensional constraints. That 

is, the issue of inaccurate attitude estimation is practically 

possible. Moreover, azimuth and elevation errors must be 

greater than or equal to the attitude estimation errors, since 

numerical and systematic errors might be accumulated 

through the coordinate transformations.

This study presents a combined navigation algorithm for 

large-scale formation flying by employing both laser and 

GPS pseudo-range measurements. Based on the algorithmic 

structure proposed in Jung et al. (2012), the single difference 

of pseudo-range measurements between two receivers 

smoothed by carrier phase measurements are incorporated 

into the measurement model, instead of azimuth and 

elevation angles, to overcome the limited accuracy due 

to the attitude estimation errors. While the navigation 

algorithm using only laser measurements depends on the 

accuracy of attitude estimation, this proposed approach 

based on the combined laser/GPS measurement model is 

independent of attitude estimation by excluding angular 

measurements of laser direction. Thus, its accuracy can 

be superior to those navigation algorithms that only use 

laser measurements, especially in the case of large-scale 

spacecraft formation flying with poor (or even reasonable) 

attitude estimation.

The overall discussion begins with the modification of 

the measurement model by employing GPS pseudo-range 

measurements after introducing the relative navigation 

algorithm via EKF in spherical coordinates based on Jung 

et al. (2012). Simulation results in large-scale formation 

flying are then presented to demonstrate the advantage of 

the proposed approach. Analyses of the relative navigation 

strategy using laser measurements are followed by the 

conclusion.

2. METHODOLOGY

2.1 Relative Navigation Algorithm in Spherical 

Coordinates

The relative navigation algorithm using laser measurements 

with respect to a chief satellite is usually defined in spherical 

coordinates, since they well represent the nature of laser 

ranging in relative motion. The spherical coordinates stated 

in Jung et al. (2012) are defined by ρ, θ, and ϕ, and are shown 

in Fig. 1. The variable ρ is the relative distance between the 

chief and deputy, and θ and ϕ are the azimuth and elevation 

angles, respectively. The coordinate transformation between 

rectangular and spherical coordinate in relative motion can be 

stated as follows (Jung et al. 2012):
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in the Earth-Centered Inertial (ECI) frame by following 

the dynamic model to accommodate the nonlinear and 

perturbation terms easily:
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by the Kalman filter using carrier phase measurements (Montenbruck et al. 2002). 
 

1 1[ ]

[ ]
k k k k

k k k k

pr pr cph cph
pr pr G pr pr


 

  

  

  
    (13) 

 (8)

where I is the delay due to the ionospheric effects, c =  

3 × 108 m/s is the speed of light, rGPS is the position vector 

of the GPS satellite, N is the carrier phase ambiguities, λ is 

the wavelength of the GPS signal, δt is the clock bias of the 

GPS receiver, and δtGPS is the clock bias of the GPS satellites. 

The observation vector is composed of the range measured 

by a laser and the single difference of pseudo-range 

measurements between the chief and deputy instead of the 

azimuth and elevation angles.

 

4 

 

( )
( )

GPS

GPS

GPS

pr p c t t I
cph p c t t N I
p

 
  

   

    

 r r
    (8) 

 
where I  is the delay due to the ionospheric effects, 83 10  /c m s   is the speed of light, GPSr  is the 
position vector of the GPS satellite, N  is the carrier phase ambiguities,   is the wavelength of the GPS 
signal, t  is the clock bias of the GPS receiver, and GPSt  is the clock bias of the GPS satellites. The 
observation vector is composed of the range measured by a laser and the single difference of pseudo-range 
measurements between the chief and deputy instead of the azimuth and elevation angles. 
 

1[    ]T
npr pr  z      (9) 

 
where n is the number of GPS satellites transmitting signals to both the chief and deputy satellites. The state 
vector for relative navigation is redefined by including t , which is the difference between the GPS 
receiver clock bias in the chief and deputy. 
 

[          ]Tt       x     (10) 
 
Then, the modified measurement model can be obtained as 
 

1,GPS

,GPS

,GPS , ,

  
( , )

( , )

( , )

( , ) ( , )
n

j c j GPS c j GPS

sf
h t

t

h t

h t t c t

 



 
 
   
 
  

       

x
h x

x

x r r x r r r

 (11) 

 
where cr  is the position vector of the chief and r is the difference of position vectors between the chief 
and deputy which can be expressed by Eq. (10). Based on Eq. (12), the Jacobian matrix of the measurement 
model can be obtained numerically. 
 

1,GPS
1,

,GPS
,

( ) ( )

( ( , ) )

( ( , ) )

c GPS

n
c n GPS

sf sf

h
t c t

H

h t c t

   





                        
   
   
    

         

x x

r r x r
x x

r r x r
xx

   (12) 

 
In order to increase the accuracy of the navigation algorithm, the pseudo-range measurements are smoothed 
by the Kalman filter using carrier phase measurements (Montenbruck et al. 2002). 
 

1 1[ ]

[ ]
k k k k

k k k k

pr pr cph cph
pr pr G pr pr


 

  

  

  
    (13) 

 (9)

where n is the number of GPS satellites transmitting signals 

to both the chief and deputy satellites. The state vector for 

relative navigation is redefined by including Δδt, which is 

the difference between the GPS receiver clock bias in the 

chief and deputy.

 

4 

 

( )
( )

GPS

GPS

GPS

pr p c t t I
cph p c t t N I
p

 
  

   

    

 r r
    (8) 

 
where I  is the delay due to the ionospheric effects, 83 10  /c m s   is the speed of light, GPSr  is the 
position vector of the GPS satellite, N  is the carrier phase ambiguities,   is the wavelength of the GPS 
signal, t  is the clock bias of the GPS receiver, and GPSt  is the clock bias of the GPS satellites. The 
observation vector is composed of the range measured by a laser and the single difference of pseudo-range 
measurements between the chief and deputy instead of the azimuth and elevation angles. 
 

1[    ]T
npr pr  z      (9) 

 
where n is the number of GPS satellites transmitting signals to both the chief and deputy satellites. The state 
vector for relative navigation is redefined by including t , which is the difference between the GPS 
receiver clock bias in the chief and deputy. 
 

[          ]Tt       x     (10) 
 
Then, the modified measurement model can be obtained as 
 

1,GPS

,GPS

,GPS , ,

  
( , )

( , )

( , )

( , ) ( , )
n

j c j GPS c j GPS

sf
h t

t

h t

h t t c t

 



 
 
   
 
  

       

x
h x

x

x r r x r r r

 (11) 

 
where cr  is the position vector of the chief and r is the difference of position vectors between the chief 
and deputy which can be expressed by Eq. (10). Based on Eq. (12), the Jacobian matrix of the measurement 
model can be obtained numerically. 
 

1,GPS
1,

,GPS
,

( ) ( )

( ( , ) )

( ( , ) )

c GPS

n
c n GPS

sf sf

h
t c t

H

h t c t

   





                        
   
   
    

         

x x

r r x r
x x

r r x r
xx

   (12) 

 
In order to increase the accuracy of the navigation algorithm, the pseudo-range measurements are smoothed 
by the Kalman filter using carrier phase measurements (Montenbruck et al. 2002). 
 

1 1[ ]

[ ]
k k k k

k k k k

pr pr cph cph
pr pr G pr pr


 

  

  

  
    (13) 

 (10)

Then, the modified measurement model can be obtained 

as

 

4 

 

( )
( )

GPS

GPS

GPS

pr p c t t I
cph p c t t N I
p

 
  

   

    

 r r
    (8) 

 
where I  is the delay due to the ionospheric effects, 83 10  /c m s   is the speed of light, GPSr  is the 
position vector of the GPS satellite, N  is the carrier phase ambiguities,   is the wavelength of the GPS 
signal, t  is the clock bias of the GPS receiver, and GPSt  is the clock bias of the GPS satellites. The 
observation vector is composed of the range measured by a laser and the single difference of pseudo-range 
measurements between the chief and deputy instead of the azimuth and elevation angles. 
 

1[    ]T
npr pr  z      (9) 

 
where n is the number of GPS satellites transmitting signals to both the chief and deputy satellites. The state 
vector for relative navigation is redefined by including t , which is the difference between the GPS 
receiver clock bias in the chief and deputy. 
 

[          ]Tt       x     (10) 
 
Then, the modified measurement model can be obtained as 
 

1,GPS

,GPS

,GPS , ,

  
( , )

( , )

( , )

( , ) ( , )
n

j c j GPS c j GPS

sf
h t

t

h t

h t t c t

 



 
 
   
 
  

       

x
h x

x

x r r x r r r

 (11) 

 
where cr  is the position vector of the chief and r is the difference of position vectors between the chief 
and deputy which can be expressed by Eq. (10). Based on Eq. (12), the Jacobian matrix of the measurement 
model can be obtained numerically. 
 

1,GPS
1,

,GPS
,

( ) ( )

( ( , ) )

( ( , ) )

c GPS

n
c n GPS

sf sf

h
t c t

H

h t c t

   





                        
   
   
    

         

x x

r r x r
x x

r r x r
xx

   (12) 

 
In order to increase the accuracy of the navigation algorithm, the pseudo-range measurements are smoothed 
by the Kalman filter using carrier phase measurements (Montenbruck et al. 2002). 
 

1 1[ ]

[ ]
k k k k

k k k k

pr pr cph cph
pr pr G pr pr


 

  

  

  
    (13) 

 (11)

where rc is the position vector of the chief and Δr is the 

difference of position vectors between the chief and deputy 

which can be expressed by Eq. . Based on Eq. (12), the 

Jacobian matrix of the measurement model can be obtained 
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where prk-1
 is  the previous filter output of pseudo-

range measurement, cphk-1
 is the previous carrier-phase 

measurement, pr -
k is the propagated pseudo-range, and G 

is the Kalman gain for smoothing the propagated pseudo-

range. G is obtained by the following relationship with 

design parameter n
lim

 (Montenbruck et al. 2002):
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Fig. 2 shows a flowchart of the proposed navigation algorithm. As shown in Eq. (9) and Fig. 2, this 
proposed algorithm does not require azimuth and elevation angles as the observation vector, thus it is 
independent of the attitude estimation error. The relative navigation error does not increase even in case of 
poor attitude estimation. 
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consider the uncertainty and specification of the hardware. The actual GPS RF signal is generated by Spirent 
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receiver (AsteRX1 PRO) manufactured by Septentrio Inc. The true orbits of the chief and deputy are 
generated by numerical integration of the dynamic model defined in the ECI frame. The dynamic model 
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and measurements, the weighting matrices are empirically determined by adjusting the terms one by one to 
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estimation error. The relative navigation error does not 

increase even in case of poor attitude estimation.

3. RESULT AND ANALYSIS

The proposed navigation algorithm is applied to the 

deputy spacecraft with respect to the chief on LEO. The 

navigation algorithms presented in Montenbruck et 

al. (2002) and Jung et al. (2012), which use only laser 

measurements and only GPS measurements, respectively, 

are also applied to the same problems for comparative 

analyses. The laser measurements are simulated by the 

software model based on the femtosecond laser instrument 

presented in Jung et al. (2012) and Jang et al. (2014), which 

is expected to yield the range with µm to cm-level accuracy 

Fig. 2. Flowchart of laser-based relative navigation algorithm using GPS measurements.
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depending on the relative distance. We set the phase 

measurement noise of the laser instrument in the software 

model as Gaussian noise with 1σ = 0.01° to consider the 

uncertainty and specification of the hardware. The actual 

GPS RF signal is generated by Spirent Communications’ GSS 

6560 simulator, and is received through the spaceborne GPS 

L1 single-frequency receiver (AsteRX1 PRO) manufactured 

by Septentrio Inc. The true orbits of the chief and deputy 

are generated by numerical integration of the dynamic 

model defined in the ECI frame. The dynamic model 

includes those perturbations by the asymmetry of Earth’s 

gravitational potential, air-drag, third bodies (Sun and 

Moon), and solar radiation pressure.

3.1 Relative Navigation Results in Large-scale Formation 

Flying

The relative orbit determination examples for demonstration 

are set as the relative orbits with 50 km and 200 km radii. The 

initial conditions of the chief and deputy are given in the ECI 

frame as
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matrices into the types of states and measurements, the 

weighting matrices are empirically determined by adjusting 
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Figs. 3–4 and 5–6 show the estimation errors of relative 

states by the proposed navigation algorithm in the case of 

50 km and 200 km radius, respectively. They are represented 

in spherical and rectangular coordinates. The relative 

states converge well in both spherical and rectangular 

coordinates. The tendencies of the converged errors are 

presented in Figs. 3–4 and 5-6, and are similar to each 

other because of the same dynamical environments, initial 

conditions of the chief, and modeling of the GPS/laser 

measurements in the numerical simulations. Tables 1 and 2 

present the Root Mean Square (RMS) errors of relative states 

from each navigation algorithm for the case of 50 km and 

200 km radius, respectively. The accuracies of the azimuth 

and elevation angles for the algorithm using only laser 

measurements are set as 1 arcsec, 0.001°, 0.005°, and 0.01° 

for the simulation examples. The estimation errors of the 

proposed algorithm are lower than those of the algorithm 

using only laser measurements even in the case of 0.001° 

accuracy in both cases. The proposed algorithm also shows 

more accurate results than the algorithm using only GPS 

measurements. Note that the state-of-the-art star trackers, 

the most accurate sensors for attitude estimation, have an 

accuracy of 2–10 arcsec (Ma et al. 2013). This implies that 

the proposed algorithm can yield more accurate navigation 

solutions than the algorithm using only laser measurements 

in large-scale formation flying, even though the spacecraft is 

equipped with the star tracker. Moreover, the azimuth and 

elevation errors must be greater than or equal to the attitude 

estimation errors due to the numerical and systematic 

errors accumulated through the coordinate transformations, 

which clearly demonstrates the advantage of the proposed 

0 1000 2000 3000 4000 5000 6000
-0.5

0

0.5

R
ad

ia
l (

m
)

0 1000 2000 3000 4000 5000 6000
-0.5

0

0.5

1

In
-tr

ac
k 

(m
)

0 1000 2000 3000 4000 5000 6000
-0.5

0

0.5

C
ro

ss
-tr

ac
k 

(m
)

Time (sec)

Fig. 4. Estimation errors of relative states in rectangular coordinates for a radius of 
50 km.
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Fig. 3. Estimation errors of relative states (black line) and observation errors of 
laser measurements (grey line) in spherical coordinates for a radius of 50 km.
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algorithm independent of the attitude estimation error in 

practical cases.

3.2 Analyses for Navigation Strategy

The superiority of the proposed algorithm to the 

algorithm using only laser measurements depends on 

both relative distance and attitude accuracy. Based on the 

3-dimensional relative position RMS errors with respect 

to the relative distances and attitude accuracies, the 

formulae which provide the timing for switching between 

the proposed algorithm and the algorithm using only laser 

measurements can be empirically deducted.

The 3-dimensional relative position RMS errors are 

obtained by numerical simulations in the case of 1 km, 10 

km, 30 km, 50 km, 100 km, and 200 km relative distances. 

The attitude accuracies are set to be the same as those 

in Section 3.1. These results lead to estimation of the 

critical accuracy of angular measurement at which the 

position RMS error of the proposed algorithm is the same 

as that of the algorithm using only laser measurements 

for each distance. The upper panel in Fig. 7 shows the 

critical accuracy vs. relative distance, which converges to 

a value less than 0.001°. When these critical accuracies are 

multiplied by each relative distance, the resultant values 

are almost proportional to the relative distances. The 

lower panel in Fig. 7 shows these values and their linear 

approximations (dashed line). This tendency allows us to 

define the decision parameter dc, which is the multiplication 

of the accuracy of primary attitude sensor and the relative 

distances. Using this dc, the timing can be estimated 

for switching between the proposed algorithm and the 

algorithm using only laser measurements as follows:
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Fig. 7. Critical accuracy and its relationship to relative distances. 
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Algorithm 
Radial 

(cm) 

In-track 

(cm) 
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(cm) 
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1  error of 

angular measurements 

Laser+GPS 11.54 5.678 7.308 14.80 - 

Laser only 5.374 3.363 4.439 7.739 1 arcsec 

Laser only 12.00 6.646 9.856 16.89 0.001 deg 

Laser only 32.15 22.50 32.80 51.15 0.005 deg 

Laser only 59.84 36.68 53.10 88.01 0.01 deg 
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Fig. 7. Critical accuracy and its relationship to relative distances.

Table 1. Relative position RMS errors of navigation algorithms for a radius of 
50 km

Algorithm
Radial
(cm)

In-track
(cm)

Cross-track
(cm)

3D (cm)
1σ error of

angular 
measurements

Laser+GPS 11.54 5.678 7.308 14.80 -
Laser only 5.374 3.363 4.439 7.739 1 arcsec
Laser only 12.00 6.646 9.856 16.89 0.001 deg
Laser only 32.15 22.50 32.80 51.15 0.005 deg
Laser only 59.84 36.68 53.10 88.01 0.01 deg
GPS only 14.43 10.01 8.608 19.56 -

Table 2. Relative position RMS errors of navigation algorithms for a radius of 
200 km

Algorithm
Radial
(cm)

In-track
(cm)

Cross-track
(cm)

3D (cm)
1 error of
angular 

measurements
Laser+GPS 44.02 25.06 28.71 58.23 -
Laser only 20.49 13.71 16.45 29.64 1 arcsec
Laser only 49.73 32.60 41.02 72.25 0.001 deg
Laser only 149.2 123.7 150.9 245.7 0.005 deg
Laser only 519.9 503.7 266.0 771.2 0.01 deg
GPS only 56.17 37.80 32.80 75.23 -
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Fig. 6. Estimation errors of relative states in rectangular coordinates for a radius of 
200 km.
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Fig. 5. Estimation errors of relative states (black line) and observation errors of 
laser measurements (grey line) in spherical coordinates for a radius of 200 km.



393 http://janss.kr 

Kwangwon Lee et al.    Laser-based RN with GPS measurements for SFF

 

6 

 

Figs. 3–4 and 5–6 show the estimation errors of relative states by the proposed navigation algorithm in the 
case of 50 km and 200 km radius, respectively. They are represented in spherical and rectangular coordinates. 
The relative states converge well in both spherical and rectangular coordinates. The tendencies of the 
converged errors are presented in Figs. 3–4 and 5-6, and are similar to each other because of the same 
dynamical environments, initial conditions of the chief, and modeling of the GPS/laser measurements in the 
numerical simulations. Tables 1 and 2 present the Root Mean Square (RMS) errors of relative states from 
each navigation algorithm for the case of 50 km and 200 km radius, respectively. The accuracies of the 
azimuth and elevation angles for the algorithm using only laser measurements are set as 1 arcsec, 0.001°, 
0.005°, and 0.01° for the simulation examples. The estimation errors of the proposed algorithm are lower 
than those of the algorithm using only laser measurements even in the case of 0.001° accuracy in both cases. 
The proposed algorithm also shows more accurate results than the algorithm using only GPS measurements. 
Note that the state-of-the-art star trackers, the most accurate sensors for attitude estimation, have an accuracy 
of 2–10 arcsec (Ma et al. 2013. This implies that the proposed algorithm can yield more accurate navigation 
solutions than the algorithm using only laser measurements in large-scale formation flying, even though the 
spacecraft is equipped with the star tracker. Moreover, the azimuth and elevation errors must be greater than 
or equal to the attitude estimation errors due to the numerical and systematic errors accumulated through the 
coordinate transformations, which clearly demonstrates the advantage of the proposed algorithm independent 
of the attitude estimation error in practical cases. 
 
 
3.2 Analyses for Navigation Strategy 
 

The superiority of the proposed algorithm to the algorithm using only laser measurements depends on 
both relative distance and attitude accuracy. Based on the 3-dimensional relative position RMS errors with 
respect to the relative distances and attitude accuracies, the formulae which provide the timing for switching 
between the proposed algorithm and the algorithm using only laser measurements can be empirically 
deducted. 

The 3-dimensional relative position RMS errors are obtained by numerical simulations in the case of 1 
km, 10 km, 30 km, 50 km, 100 km, and 200 km relative distances. The attitude accuracies are set to be the 
same as those in Section 3.1. These results lead to estimation of the critical accuracy of angular measurement 
at which the position RMS error of the proposed algorithm is the same as that of the algorithm using only 
laser measurements for each distance. The upper panel in Fig. 7 shows the critical accuracy vs. relative 
distance, which converges to a value less than 0.001°. When these critical accuracies are multiplied by each 
relative distance, the resultant values are almost proportional to the relative distances. The lower panel in Fig. 
7 shows these values and their linear approximations (dashed line). This tendency allows us to define the 
decision parameter cd , which is the multiplication of the accuracy of primary attitude sensor and the 
relative distances. Using this cd , the timing can be estimated for switching between the proposed algorithm 
and the algorithm using only laser measurements as follows: 
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4. CONCLUSION 
 

In this paper, a combined navigation algorithm using laser and GPS measurements for large-scale 
formation flying is proposed. Based on the algorithm presented by Jung et al. (2012), the relative navigation 
algorithm is formulated by modifying the measurement model. The single difference of GPS pseudo-range 
measurements is incorporated into the measurement model instead of the azimuth and elevation angles. The 
extended Kalman filter is applied to estimate the relative position and velocity and to obtain the smoothed 
pseudo-range measurements to increase the accuracy of the algorithm. This strategy allows the laser-based 
relative navigation algorithm to exclude angular measurements of laser directions which depend on attitude 
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4. CONCLUSION

In this paper, a combined navigation algorithm using 

laser and GPS measurements for large-scale formation flying 

is proposed. Based on the algorithm presented by Jung et 

al. (2012), the relative navigation algorithm is formulated by 

modifying the measurement model. The single difference of 

GPS pseudo-range measurements is incorporated into the 

measurement model instead of the azimuth and elevation 

angles. The extended Kalman filter is applied to estimate the 

relative position and velocity and to obtain the smoothed 

pseudo-range measurements to increase the accuracy of 

the algorithm. This strategy allows the laser-based relative 

navigation algorithm to exclude angular measurements 

of laser directions which depend on attitude estimation 

errors, so the proposed algorithm can provide better relative 

navigation results than the algorithm using only laser 

measurements with attitude accuracies greater than 0.001° 

in large-scale formation flying. Considering the accuracy 

of the state-of-the-art star trackers and the accumulated 

errors in the transformation between azimuth/elevation 

and attitude information, it is clearly demonstrated that the 

proposed algorithm can be considered favorably compared 

with the algorithm using only laser measurement in large-

scale formation flying. 
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