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This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based real-
time satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational 
environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser 
measurement model was developed. The phase differences between two laser wavelengths were combined to measure 
precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. 
Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and 
laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine 
the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution 
increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, 
relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this 
study is suitable for application to future satellite formation-flying missions.
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1. INTRODUCTION

The Global Positioning System (GPS) is a well-used satellite 

navigation technology (Parkinson et al. 1996; Hofmann-

Wellenhof et al. 2001). Numerous space missions have applied 

GPS systems to meet navigational accuracy requirements. 

For example, the PRISMA mission, which is a mission for the 

Earth observation using hyperspectral sensors, applied GPS-

based relative navigation to perform autonomous formation 

flying (D’Amico et al. 2013). When performing GPS-based 

relative navigation, the Carrier-phase Differential GPS (CDGPS) 

concept is widely used and several formation-flying missions 

have used CDGPS to obtain relative navigation solutions. For 

example, during the Gravity Recovery and Climate Experiment 

(GRACE) mission, the CDGPS-based relative navigation 

error was ~2 cm in the radial and cross-track directions, and 

4 cm in the along-track direction, in comparison with K-band 

inter-satellite ranging measurements (Kroes et al. 2005; 

Montenbruck et al. 2005; Kohlhase et al. 2006). The TerraSAR-X 

and TanDEM-X missions also used CDGPS-based relative 

navigation to attain millimeter-level resolution of the Synthetic 

Aperture Radar (SAR) interferometric baseline (Montenbruck 

et al. 2008). 

The single/double differencing method has advantages 

to the GPS-based relative navigation. GPS satellites’ clock 

errors, receivers’ clock errors, and ionospheric errors can 

also be eliminated by differencing two individual GPS 

raw data measurements obtained from two GPS receivers 

(Hofmann-Wellenhof et al. 2001). Relative navigation 

accuracy using carrier measurements is typically at 

millimeter-level, while code measurement-based relative 

navigation accuracy is about three orders of magnitude 
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higher. In pseudorange measurements, clock errors between 

GPS satellites and the receiver significantly increase distance 

measurement errors. For CDGPS, the error factor mainly 

reflects GPS integer ambiguity resolution (i.e., the number 

of carrier waves that have traveled from GPS satellites to the 

receiver). When GPS integer ambiguity is exactly known, 

millimeter-level carrier-phase measurement precision can 

be achieved (Hofmann-Wellenhof et al. 2001). Park et al. 

(2010) obtained centimeter-level three dimensional (3D) 

Root-Mean-Square (RMS) position accuracy in hardware-

in-the-loop simulations of formation-flying satellites using 

millimeter-level carrier-phase measurement data.

Many space missions have applied the Least-squares 

AMBiguity Decorrelation Adjustment (LAMBDA) method 

(Teunissen 1995) to resolve double difference carrier-

phase ambiguity. The LAMBDA method applies a general 

least-squares approach to estimate the integer ambiguity 

contained in carrier-phase measurements. In the float 

ambiguity resolution phase, precise inter-satellite baseline 

information increases the ambiguity resolution rate and 

resolution accuracy (Hofmann-Wellenhof et al. 2001). 

Precise float ambiguity solutions can improve the accuracy 

of integer ambiguity resolution and can reduce resolution 

time. Thus, more accurate integer ambiguity resolutions can 

yield better relative navigational results. 

The main objective of this study was to establish a 

method of utilizing laser data to improve the accuracy of 

integer ambiguity resolutions. Satellites’ relative distance 

measurement data was applied to a GPS measurement 

model to improve the quality of the ambiguity resolution. 

A femtosecond laser using a synthetic  wavelength 

interferometry (SWI) algorithm was used to measure the 

distance between two satellites. Since the configuration of 

femtosecond lasers is simple and all parts are composed 

of optical fiber, they can be operated reliably with external 

vibration and shock, such that they can fit within the extreme 

environment of space. A software-in-the-loop simulation 

was performed to describe the laser measurement data, 

which were applied to the CDGPS-based relative navigation 

algorithm. An Extended Kalman Filter (EKF) algorithm was 

applied to obtain a real-time relative navigation solution. 

The results showed that success rates of integer ambiguity 

resolution increased when the laser data were included. 

2. RELATIVE NAVIGATION ALGORITHM

2.1 Dynamic Model

In GPS technology (Fig. 1), target satellites A and B 

are both equipped with GPS receivers that obtain GPS 

measurement data. The states of target satellites A and B are 

represented by:
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Fig. 1. Concept of satellite relative positioning using the Global Positioning System (GPS).
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When measurement data of the ith and jth GPS satellites are successfully acquired by receivers A and B, 

the following single difference equations can be derived: 
 

 

 
When the ith and jth GPS satellite measurement data have the same frequency, the time biases of the 
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In this study, a laser distance measurement model was integrated with the GPS single/double 

difference measurement model. Jang et al. (2014) introduced the use of a femtosecond laser based on an SWI 
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and is applied to construct interferometry of the synthetic wavelength to measure distance. 

The precision of laser measurement data is affected by relative distance (𝜌𝜌𝐴𝐴𝐴𝐴)  and relative 
velocity (𝜌̇𝜌𝐴𝐴𝐴𝐴). The relative velocity between spacecraft mainly affects measurement precision owing to 
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the following single difference equations can be derived: 
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In this study, the linearized GPS code, carrier-phase 

measurement model, and laser measurement model were 

combined (e.g., Eqs. 4, 8 and 10) to form Eq. (11): 
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where subscript n denotes the number of observable GPS 

satellites. 

The ambiguity of GPS carrier-phase measurements was 

also determined. When GPS measurement data are solely 

utilized, the upper two columns in Eq. (11) are only applied 

to the measurement model in the filtering algorithm. 

The ambiguity of the GPS carrier-phase can be estimated 

using GPS measurements only. However, when the laser 

measurement data and model are added to the algorithm, the 

unknown parameters in Eq. (11), including the ambiguity, 

can be estimated more accurately, in particular when laser 

measurement data accuracy is high.

2.4 Filtering Algorithm

In this study, the estimating filter of Kalman (1960) was 

utilized for real-time satellite navigation. The EKF uses 

a state transition matrix in a linearized form to predict 

covariance (Zarchan & Musoff 2005). The relative navigation 

algorithm was performed based on the relative state vector, 

initial estimation of the covariance matrix, the process 

noise (Q), and the measurement noise (R). The relative state 

vector of the satellite B with respect to the satellite A was 

represented in RSW coordinates. The predicted covariance 

matrix (P) and state in the EKF process are expressed as: 
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−), and both the GPS and laser-combined 
measurement model (H), as expressed in equation (14): 
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coordinates is obtained from GPS-based absolute navigation, while the relative state vector can be induced 
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data. If integer ambiguity has been resolved correctly, the measurement error using carrier-phase 
measurements will be less than 19 cm, which reflects the length of the GPS L1 signal. After float ambiguity 
resolution is completed by the filtering algorithm, the integer ambiguity has to be determined. The most 
common integer ambiguity resolution method is LAMBDA (Teunissen 1995), which was developed to solve 
the problem that correlation in the off-diagonal term of the covariance matrix increases integer ambiguity 
resolution processing time. Rapid integer ambiguity resolution is possible with non-correlated re-defined 
float ambiguity and a covariance matrix. True integer ambiguity is resolved by reverse conversion of the 
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3.1 Simulation Settings 

 
Relative navigational simulations using GPS and laser measurement data were performed for two 

formation-flying satellites. The initial relative distance between the satellites was set to 250 m and 5 km, and 
both were Projected onto a Circular Orbit (PCO) by considering the availability of formation-flying satellites 
in Low Earth Orbit (LEO). The initial position and velocity components of two satellites in the ECI 
coordinate system are presented in Table 1. Total simulation time was set to 100 min, with GPS and laser 
measurement data obtained every second. GPS signals were simulated using the GSS6560 Spirent Global 
Navigation Satellite System(GNSS) signal simulator and Spirent SimGEN program, while the AsteRx space-
borne GPS receiver was used to obtain raw GPS measurements (Park et al. 2010). The number of observable 
GPS satellites is presented in Fig. 2. Laser measurement data were generated using software algorithms, 
including possible Gaussian random error introduced by hardware characteristics. When more than four GPS 
satellites were observable, relative navigation was available, which occurred for the whole simulation time.  

Simulation was started by propagating the true states from the initial state of the satellite A and B. For 
the dynamic propagation of satellite states, the Earth’s gravity, the gravity of the sun and the moon, the air 
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In this study, the linearized GPS code, carrier-phase measurement model, and laser measurement 
model were combined (e.g., equations 4, 8, and 10) to form equation (11):  

 

 
where subscript n denotes the number of observable GPS satellites.  

The ambiguity of GPS carrier-phase measurements was also determined. When GPS measurement 
data are solely utilized, the upper two columns in equation (11) are only applied to the measurement model 
in the filtering algorithm. The ambiguity of the GPS carrier-phase can be estimated using GPS measurements 
only. However, when the laser measurement data and model are added to the algorithm, the unknown 
parameters in equation (11), including the ambiguity, can be estimated more accurately, in particular when 
laser measurement data accuracy is high. 

 
2.4 Filtering Algorithm 

 
In this study, the estimating filter of Kalman (1960) was utilized for real-time satellite navigation. The 

EKF uses a state transition matrix in a linearized form to predict covariance (Zarchan & Musoff 2005). The 
relative navigation algorithm was performed based on the relative state vector, initial estimation of the 
covariance matrix, the process noise (Q), and the measurement noise (R). The relative state vector of the 
satellite B with respect to the satellite A was represented in RSW coordinates. The predicted covariance 
matrix (P) and state in the EKF process are expressed as:  

 

 

 
where superscript – is the propagated state and subscript k indicates the step number of the filtering process. 
The Kalman gain is calculated using the predicted covariance (𝑃𝑃𝑘𝑘

−), and both the GPS and laser-combined 
measurement model (H), as expressed in equation (14): 

 

 

 𝑦𝑦𝐿𝐿,𝐴𝐴𝐴𝐴 = (𝒓̂𝒓𝐴𝐴𝐵𝐵∗)𝑇𝑇𝛿𝛿𝒓𝒓𝐴𝐴𝐴𝐴 + 𝜅𝜅 1
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{(𝒓̇𝒓𝐴𝐴𝐵𝐵∗)𝑇𝑇 − 𝜌̇𝜌𝐴𝐴𝐵𝐵∗ (𝒓̂𝒓𝐴𝐴𝐵𝐵∗)𝑇𝑇}𝛿𝛿𝒓𝒓𝐴𝐴𝐴𝐴 + 𝜅𝜅(𝒓̂𝒓𝐴𝐴𝐵𝐵∗)𝑇𝑇𝛿𝛿𝒓̇𝒓𝐴𝐴𝐴𝐴 (10) 
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3. RELATIVE NAVIGATION SIMULATION

3.1 Simulation Settings

Relative navigational simulations using GPS and laser 

measurement data were performed for two formation-flying 

satellites. The initial relative distance between the satellites 

was set to 250 m and 5 km, and both were Projected onto 

a Circular Orbit (PCO) by considering the availability of 

formation-flying satellites in Low Earth Orbit (LEO). The initial 

position and velocity components of two satellites in the ECI 

coordinate system are presented in Table 1. Total simulation 

time was set to 100 min, with GPS and laser measurement 

data obtained every second. GPS signals were simulated 

using the GSS6560 Spirent Global Navigation Satellite System 

(GNSS) signal simulator and Spirent SimGEN program, while 

the AsteRx space-borne GPS receiver was used to obtain 

raw GPS measurements (Park et al. 2010). The number 

of observable GPS satellites is presented in Fig. 2. Laser 

measurement data were generated using software algorithms, 

including possible Gaussian random error introduced by 

hardware characteristics. When more than four GPS satellites 

were observable, relative navigation was available, which 

occurred for the whole simulation time. 

Simulation was started by propagating the true states 

from the initial state of the satellite A and B. For the dynamic 

propagation of satellite states, the Earth’s gravity, the gravity 

of the sun and the moon, the air drag, and solar radiation 

were considered. GPS and laser measurements were 

generated by corresponding algorithms and the simulator. 

The generated data were transmitted to the satellite on-

board computer module to perform the extended Kalman 

filter based relative navigation.

3.2 Simulation Results

Figs. 3 and 4 show the laser measurement data, measurement 

rates, and measurement errors. Measurement errors were 

calculated by subtracting the generated laser data from the 

true relative position of two spacecraft. The characteristics of 

the femtosecond laser causes proportional relation between 

distance rate and distance error. Due to the latency existing in 

low-pass filter of the femtosecond laser algorithm, distance-

measuring delay is occurred. Therefore, the error between true 

Table 1. Initial positions and velocities of satellite A and B

Radius of the projected circular orbit
250 m × 500 m 5 km × 10 km

Satellite A B A B
X (m) 6,930,000 6,930,250 6,930,000 6,935,000
Y (m) 0 0 0 0
Z (m) 0 0 0 0

Vx (m/s) 0 0 0 0
Vy (m/s) 3,810.947 3,810.815 3,810.947 3,808.307
Vz (m/s) 6,600.754 6,600.525 6,600.754 6,596.182
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Fig. 2. Number of observable Global Positioning System (GPS) satellites with total simulation period.
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relative distance and the laser measurements become larger 

when the rate of the relative distance change is higher. Figs. 5 

and 6 show GPS-based relative navigational errors for the 250 

m initial relative distance. The errors were calculated from the 

difference between simulated true states and estimated states 

and are expressed in terms of RMS. When integer ambiguity 

was not estimated, relative navigational error increased to 

decimeter level (Figs. 5 and 6). Relative navigational errors for 

when laser data were added to the simulation are presented 

in Figs. 7 and 8. In these simulations, integer ambiguities were 

fully estimated for all simulation times. The results showed that 

3D relative navigational RMS errors decreased from 10.68 mm 
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Fig. 4. Laser data simulation results for a 5 km initial relative distance.

Fig. 3. Laser data simulation results for a 250 m initial relative distance.
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to 2.11 mm, reflecting the increase in the integer ambiguity 

resolution success rate for the CDGPS data. Rates of integer 

ambiguity resolution success according to the total simulation 

time are increased from 99.55% to 100% when laser data were 

applied.

The results of simulations performed using the 5 km 

initial relative distance are shown in Figs. 9 and 10, and 

Table 2. Relative navigational errors increased as the relative 

distance between the satellites was extended. When only 

GPS measurements were applied, the 3D RMS error was 

Fig. 5. Relative navigational errors using Global Positioning System (GPS) data in RSW coordinates for a 
250 m initial relative distance.

Fig. 6. Relative navigational errors using Global Positioning System (GPS) data in 3-dimensional space 
for a 250 m initial relative distance. Dots indicate successfully estimated integer ambiguity, and crosses 
show failed integer ambiguity resolution.
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29.78 mm, but this decreased to 14.05 mm when laser 

measurement data were added. The integer ambiguity 

resolution success rate also increased significantly. These 

simulation results imply that the application of laser 

relative distance measurement data to GPS-based relative 

navigation is more effective for longer relative distances.

Fig. 7. Relative navigation errors using Global Positioning System (GPS) data and laser data in RSW 
coordinates for a 250 m initial relative distance.

Fig. 8. Relative navigational errors using Global Positioning System (GPS) data and laser data in 3-dimensional 
space for a 250 m initial relative distance.
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Table 2. Relative navigational error with and without laser distance measurement data

Radius of the projected 
circular orbit

Measurement
data type

R (mm) S (mm) W (mm) 3D RMS (mm)
Integer ambiguity 
resolution rate (%)

250 m × 500 m
GPS only 5.11 7.92 5.00 10.68 99.55

GPS + laser 1.55 1.05 0.95 2.11 100

5 km × 10 km
GPS only 12.70 24.32 10.73 29.78 87.39

GPS + laser 10.13 8.68 3.87 14.05 94.2

Fig. 9. Relative navigational errors using Global Positioning System (GPS) data in 3-dimensional space 
for a 5 km initial relative distance. Blue data points indicate successful estimations, and red data show 
failed estimations.

Fig. 10. Relative navigational errors using Global Positioning System (GPS) data and laser data in 
3-dimensional space for a 5 km initial relative distance. Blue data points indicate successful estimations, 
and red data show failed estimations.
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4. CONCLUSIONS

In this study, we proposed a new approach to improving 

GPS-based satellite relative navigation using femtosecond 

laser-based relative distance measurements. Synthetic 

wavelength interferometry-based femtosecond laser, which 

was chosen for its high robustness to space environments, 

was applied to CDGPS-based relative navigation to improve 

the performance of float ambiguity resolution. When 

performing the software simulation using 250 m and 5 km 

initial relative distances on PCO, the integer ambiguity 

resolution success rate increased when laser data was 

added. The resulting relative navigation solutions showed 

five-fold and two-fold improvements for the 250 m and 5 

km initial relative distances, respectively. The increases 

in the integer ambiguity resolution success rate were 

caused by the positive effects of the laser-based baseline 

measurement data on CDGPS-based relative navigation. 

During the EKF process, a laser measurement model was 

added to the single/double difference GPS measurement 

model, resulting in higher precision estimation accuracy. 

In conclusion, the femtosecond laser represents a useful 

tool for future formation-flying missions that require high 

precision relative navigational requirements. Furthermore, 

femtosecond laser-based baseline measurement data can 

be utilized to verify relative baseline determination results. 
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