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Abstract

Relative navigation system is presented using GPS measurements from a single-channel
global positioning system (GPS) simulator. The objective of this study is to provide
the real-time inter-satellite relative positions as well as absolute positions for two for-
mation flying satellites in low earth orbit. To improve the navigation performance,
the absolute states are estimated using ion-free GRAPHIC (group and phase iono-
spheric correction) pseudo-ranges and the relative states are determined using double-
differential carrier-phase data and singled-differential C/A code data based on the ex-
tended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative
dynamic model and modified relative measurement model are developed. This mod-
ified EKF method prevents non-linearity of the measurement model from degrading
precision by applying linearization about absolute navigation solutions not about the
priori estimates. The LAMBDA method also has been used to improve the relative
navigation performance by fixing ambiguities to integers for precise relative naviga-
tion. The software-based simulation has been performed and the steady state accu-
racies of 1 m and 6 mm (1o of 3-dimensional difference errors) are achieved for the
absolute and relative navigation using EKF for a short baseline leader/follower forma-
tion. In addition, the navigation performances are compared for the EKF and the UKF
for 10 hours simulation, and relative position errors are mm-level for the two filters
showing the similar trends.

Keywords: relative navigation, GPS, formation flying, extended Kalman filter, unscented Kalman
filter

1. Introduction

Satellite Formation Flying has been proposed recently for advanced space missions. Compared
to a large individual spacecraft, the formation flying technique provides improved flexibility and
redundancy as well as economical efficiency. Also, satellite formations in low Earth orbit can offer
higher resolution imagery and interferometry by precise determination of the distance between two
satellites. One of the good examples of formation flying is the synthetic aperture radar (SAR) inter-
ferometry formation of TerraSAR-X and TanDEM-X satellites for generating highly accurate map-
ping (Moreira et al. 2004). The mission objective is based on along-track interferometry as well as
new techniques with bi-static SAR, and a precise interferometric baseline vector can be determined
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with the relative position knowledge of 1 mm for different along-track separations by GFZ (Geo
Forschungs Zentrum) (Moreira et al. 2004). The GRACE mission had been also designed for for-
mation flying satellites with a normal baseline of 220km by NASA (National Aeronautics and Space
Administration) and DLR (Deutsches Zentrum fuer Luft- and Raumfahrt). The primary objective of
the GRACE mission was to map the long- to medium- wavelength spherical harmonic coefficients
of the Earth’s gravitational field (Tapley et al. 2004). The precise GRACE baseline accuracy was
1 mm for the along-track (Kroes 2006) compared to the K-band ranging (KBR). The two missions
make use of dual-frequency GPS measurements; however, the recent Swedish-led micro-satellite
mission PRISMA uses only single-frequency GPS measurement for on-board relative navigation.
The goal of the PRISMA mission, planning to launch in 2009, is to demonstrate in-flight technology
experiments related to autonomous formation flying, homing and rendezvous scenarios (D ‘mico et
al. 2008).

These formation flying missions are supported by the determination of the relative positions
between satellites; therefore the real-time relative navigation plays a key role in formation mainte-
nance and control. The relative states can be estimated with high precisions since we can take the
advantage of differential positioning canceling out common errors. To obtain the precise relative
position, single-differential GPS (SDGPS) and double-differenced GPS (DDGPS) measurements
are used. Also, GRAPHIC (group and phase ionospheric correction) measurement data is provided
for the ion-free absolute navigation using only single-frequency GPS measurements. In addition,
the GPS-based navigation system can offer the 3-dimensional nature of the measurements as well
as can allow real-time processing. Thus, on-board relative navigation system based on the reliable
GPS enables to obtain inter-satellites precise relative positions for autonomous formation flying, and
therefore, the research in the areas has been developed actively over the past 10 years.

The studies about low-Earth orbit (LEO) DGPS systems have already produced sub-cm-level
relative position accuracies in software or hardware-in-the-loop (HWIL) simulations. Binning &
Galysh (1997) demonstrated HWIL simulation using dual frequency GPS measurement for a 5 km
baseline and achieved a relative positioning accuracy of 6.56 cm (3-dimensional root-mean-square
(RMS)). Busse et al. (2002) estimated the relative position to 1 cm for about 1 km baseline and
Ebinuma et al. (2001) showed a 5 cm relative position accuracy in closed loop rendezvous of two
spacecraft using single-frequency GPS receivers in HWIL simulations. A study of Montenbruck et
al. (2002) presented an accuracy of 0.5 m for a 12 km baseline with single-frequency GPS measure-
ments. Also, HWIL simulation was carried out by Leung & Motenbruck (2005). Here, an accuracy
of 1 cm for a 12km baseline and an accuracy of 1.5 mm over 2x4 km separations were obtained for
the best case. Furthermore, the recent studies by Kroes (2006) and Marji (2008) showed mm-level
relative position accuracies for a 1 km baseline with dual-frequency measurements. In particular,
Marji (2008) obtained accuracies of 2 mm, 3 mm, and 2 mm in radial, along-track, and cross-track,
respectively.

Based on the early works, the present research has focused on the development of a real-time
navigation system using the simulated GPS data not observation data obtained by GPS receivers due
to its applicability. For precise relative navigation both single-differenced (SD) GPS C/A code and
double-differenced (DD) GPS carrier phase measurements are used, and GRAPHIC measurement is
employed to get ion-free pseudo-ranges in absolute navigation algorithm. Since the GPS observables
have errors like ionospheric delays, the effect of errors should be reduced as accurate as possible to
obtain meaningful geometric ranges between GPS satellites and user satellites. Therefore, the ac-
curate measurement modeling in filter algorithm is required for the precise orbit determination. In
particular, the relative measurement model is modified to be linearized at each estimated absolute
position for the two user satellites, which is different from the traditional EKF method. The tradi-
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Figure 1. Geometry of GPS satellites and two user satellites (Mohiuddin & Psiaki 2005).

tional measurement equations are linearized at a priori states; the first order approximation can bring
about a significant linearization error for highly nonlinear systems. However, the modified method
can lead to an accurate estimation for arbitrary baseline applications since the linearization about
absolute estimates do not result in significant linearization errors in relative navigation algorithm
(Mohiuddin & Psiaki 2005). The reduction of linearization error is a challenging problem in EKF
algorithm for large baseline, thus this modified linearization scheme might be a good solution for
large baseline applications. Furthermore, the main contribution to this research is to develop the rel-
ative navigation algorithm using the UKF as well as the EKF in real-time. The studies about refative
navigation using UKF conducted so far has a lot of considerable points to be improved; the work
assumed very simple relative dynamics (Lee & Alfriend 2003) and needed so longer simulation time
than EKF (Stastny et al. 2008).

Therefore, we will develop and improve the UKF and the EKF relative navigation algorithm
providing not only high precision but also appropriate processing time. Following chapters include
the measurement and dynamic models and filtering algorithms with ambiguity resolution. Finally,
discussion about the simulation results and conclusion for satellite relative navigation are given in
the last two sections.

2. Measarement Equations

The navigation filter is comprised of the two steps, time update and measurement update. Before
constructing the filter algorithm, the measurement equations are derived and modeled in simple
forms based on the simulated GPS measurements for both absolute and relative navigation in this
section. The GPS observables generally consist of code pseudo-range, carrier phase pseudo-range,
and Doppler data for L1 and L2 frequencies. However, in this study a single-frequency is only used,
which is enough for a short baseline relative navigation less than 10 km. Therefore, the possible
observables are C/A code pseudo-range, L1 carrier phase, and their combination. First, GRAPHIC
data, an arithmetic mean of C/A code and L1 carrier phase, is used for the measurements of absolute
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navigation. Using the single-frequency GRAPHIC data can provide the economical efficiency and
simplicity of the system due to the advantage of eliminating the dominant measurement error factors,
ionosphere errors without dual-frequency GPS measurements (Montenbruck et al. 2006). Here, we
assume that the measurement noise for the measurement model of C/A code pseudo-range and L1
carrier phase is Gaussian with the variances, o}, /4 and 02,. As aresult, the measurement noise

variance for GRAPHIC data is a quarter of the summation of two variances, 67, + 05 /a- Also,
we assume the measurement noise vectors are not correlated each other, and thus the measurement
noise covariance matrix R, has a diagonal form with the size of JxJ where the number of visible
satellite is J.

The relative navigation estimate algorithm uses the modified unknowns in order to decompose
the relative position solution into a correction to the relative position, which it will determine pre-
cisely, and a correction to the absolute position. In Figure 1, the modified relative measurement
modeling method is described. The character A and B indicate the true positions of two satellites,
the notation AB means the difference B to A, or B-A, and * means the estimated absolute position of
the satellites. Here, the state to be estimated is a correction vector dr 4 g, which means the correction
difference ér 4 from rp in Egs. (1,2); therefore, the relative correction vector enables to estimate
the relative position precisely using the absolute estimates.

FA = rag--+06r4a, rp=rp-+9drp §))
rAB = rap--+0rsp 2)

The code measurement equations for each user satellite are linearized and rearranged to be the
known terms on the left and the linear unknown terms on the right (Mohiuddin & Psiaki 2005).
Then, the SD code measurement and the DD carrier-phase measurement are modeled for the precise
relative navigation. The SD involves two user satellites A and B and one GPS satellites 5. We
define the new measurement for SD as Ayfg’ p including SD code pseudo-range, and the SD code
equations for the two satellites are followed.

Ayh ap = () 0ra + (5.) rap + cdtan, j=1,2,.,3 3

The line of sight vectors of user satellites estimated in absolute navigation algorithm viewed from
the GPS satellite are denoted as p 4+ and gp«, and jap~ is a unit vector of the inter-satellite relative
position. The SD ionospheric errors are ignored because the user satellite A and B are close, however
the SD clock offset 6t 4p should be considered in the SD measurement equation, Eq. (3). The
carrier phase measurement equations are same as the code measurement equations. For the two
GPS satellites ¢ and j, the two linearized SD carrier phase equations form the DD carrier phase
measurement equation. The new DD measurements VAy;]’ ap corresponds the DD carrier phase
measurement data in Eq. (4).

VAYY g = (VAR g )Tora + (V5g.)Torap + A\VAG 5, j=2,3,..,] )

In this equation, the GPS satellite with the best DOP is selected the first GPS satellite i, and the DD
ambiguity term AVAa"] is included in the measurement model. The DD carrier phase measure-
ment makes possible to resolve the DD ambiguity vector in Eq. (4) to integer separated from the
biases since the initial phases and clock offsets of receivers of two satellites are canceled out, which
improves the precision of relative position (Psiaki & Mohiuddin 2007). However, using DD carrier
phase measurement could be a problem in case of large baseline formations since the visibility of
GPS satellites would be different for each satellite and it will change quickly so that the common
visible GPS satellites can be less than the minimum GPS satellite number 4.
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Table 1. Dynamics for user satellites (Vallado 2007).

POD Model Description
Force Model Aspherical Earth gravity 70 x 70 JGM3
Solar and lunar gravity Astronomical almanac
Atmospheric drag Exponential model
Solar radiation pressure With eclipse
Reference Frame  Precession & nutation (Seidelmann 2006)
Earth rotation & polar motion ~ UTI (Seidelmann 2006)
Filtering EKF and UKF Step size: 30 sec

We assume that the measurement noise errors show a random behaviors resulting in a normal
distribution with expectation value of zero and variances of 0 %I and 0%, for code and carrier phase
measurements. The mathematical correlation introduced by single differencing yields the measure-
ment noise covariance matrices Rap = 20%I and Rag = 20%,I. This shows that SD measure-
ments are also uncorrelated. However, the DD measurements are correlated so that the DD carrier
phase measurement noise matrix Ry a4 has the off diagonal terms (Hofmann-Wellenhofet al. 2008).
Note that the dimension of the unit matrix corresponds to the number of measurements at each time,
which is equal to the number of GPS satellites J, and the dimension of the DD measurement noise
covariance is J-1. The SD code measurement noise covariance matrix and the DD carrier phase
Rap 0

measurement noise covariance matrix are come together in the form of R = 0o R .
VA

3. Navigation Algorithm

The extended Kalman filter (EKF) has been found to be very robust and adequate for highly
precise relative spacecraft positioning. The strength of the filter is that integer ambiguities can
be resolved on-the-fly and instantaneously used. In this way the relative position solution directly
improves, and the already resolved integer ambiguities automatically aid in the resolution of new
ones as they appear over time. The relative spacecraft dynamics of the filter can be handled in
an easier way than for the dynamics of batch least-square method (LSQ) since the propagation
restarts at every epoch time. Therefore, the EKF algorithm for navigation will be employed allowing
autonomous applications for the formation flying satellites, and further, the unscented Kalman filter
(UKF) algorithm is also presented and the filter performances are compared with EKF.

The Kalman filter is used to estimate the spacecraft position and velocity vector z 4 g, clock error
T, and ambiguity A in real-time. First, the absolute navigation is performed using each filter and the
relative navigation algorithm uses the absolute estimates in measurement modeling. The absolute
navigation algorithm is very similar to the relative navigation algorithm; therefore the absolute nav-
igation process can be referred to the algorithm of Shim (2009). In this navigation algorithm, time
update involves the propagation of the positions and velocities of two satellites through a numerical
integration of the precise dynamic equations by 4" order Rung-Kutta integrator. The 4" order inte-
grator can usually provide for the sufficient precision (Montenbruck & Gill 2001). The perturbations
in force model and other filter information used in this study are summarized in Table 1.

3.1 EKF Algorithm for Relative Navigation

The relative navigation algorithm begins by assuming the random process to be estimated can
be modeled in the Eq. (5).

tap = f(zag,t) + Dw(?) (%)
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Figure 2. Psendo-relative dynamic propagation and measurement update.

For relative navigation, the state z 45(t) should contain the absolute position and velocity for the
satellites A and the relative position and relative velocity for satellites A and B. Therefore, the
relative motion state is defined as z45(2) = [ra(t) va(t,ra) ran(?) u{m(T, r4,75)]T. The
01 00
0 0 0 I

noise vector w = [w4 wB]T. We assume the process noise vector is Gaussian. Finally, the filter
state for relative navigation involves the correction state 8z 45 = [0r4 dva drap dvap) as well
as the SD clock offset T4 p and the DD ambiguity vector A. Thus the augmented filter state is
denoted as Xap = [dzap Tas A]T. The satellite motion orbiting with respect to the Earth
is described by the dynamic differential equation, which is to add the perturbing accelerations to
the two-body equation for each satellite. Therefore, the relative acceleration applied the pseudo-
relative dynamic is an only direct difference between accelerations for each satellite, f(z ap,1t)
= [va(t) aa(t,ra,va) vap(t) ap(t,rp,vB) — aa(t,74,v4)]7. The relative motion state is
propagated considering the perturbations in Table 1, and the SD clock offset and the DD ambiguities
are constant in time update step. Therefore, the dynamic equation for the augmented filter state
becomes Eq. (6).

dynamic uncertainties are expressed in the matrix D = [ } and the process
12x12

Xap = F(Xap,t) + D'uw'(t) (6)

where F(Xap,t) = [f(zap,t) 1 I;_1)T.w' =[wa wap 0 0;-4]7,
T

oo o
OO e
oo o
O
oo
oo o

(12+4-J) x (12+J)
The filter state vector describing satellite motions has 12-dimension, the SD clock offsets ¢dt 45
is scalar, and the DD ambiguity vector has (J-1)-dimension resulting the total number of state to be
estimated is 12+] where J is the visible GPS satellite numbers.

In the propagation step, the posteriori estimate is numerically integrated for the individual satel-
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lite. For the relative state, there is no accurate dynamic equation that demonstrates relative motions
between two satellites. Although Hill’s equation can describe the relative motion, some strict as-
sumptions should be satisfied. In other words, the motion of a chief satellite should be circular and
a deputy satellite should be very close to a chief satellite. Therefore, we will consider the pseudo-
relative dynamics that each state is propagated independently. The relative navigation scheme is
shown in the Figure 2 (Leung & Montenbruck 2005). The integrated filter states for satellites A
and B are directly differenced, and the state is updated using differential measurements. The co-
variance update is performed between time update step and measurement update step. Covariance is
propagated in time domain using Eq. (7) with the simple form of process noise covariance matrix Q.

P=AP+PAT +Q )

After propagation of the state and the covariance matrix in the filter algorithm, the Kalman gain
is calculated in Eq. (8) using the measurement noise covariance obtained in chapter 2.

Ky = PoHT(H P HT + Ry)™ ®)

Finally, a posteriori states and the covariance matrix are updated in the EKF algorithm, and
the estimated relative states indicate the correction terms with respect to the absolute navigation
solutions for each satellite A and B (Brown & Hwang 1997). Therefore, using the relations of
Eq. (2) the relative positions and velocities are obtained by adding the estimated correction terms to
the absolute navigation sclutions.

Furthermore, the estimated ambiguities may be float; therefore, we should fix the float ambigu-
ities to the exact integers in the filter algorithm. We have used the LAMBDA method as an integer
ambiguity resolution algorithm referred from the Mathematical Geodesy and Positioning of the Detft
University of Technology (http://www.Ir.tudelft.nl/mgp). The LAMBDA method introduced by Te-
unissen {1995) can provide the accurate integer ambiguity combinations, and by updating the state
vectors with fixed integer ambiguities, we can lead to an improvement for the relative navigation
performances.

3.2 UKF Algorithm for Relative Navigation

In contrast to the EKF which uses linearization to approximate the mean and covariance matrix
after a nonlinear transformation, UKF uses a set of deterministically chose and nonlinearly trans-
formed points to approximate theses quantities (Lee & Alfriend 2003). Therefore, the construction
of the UKF algorithm is thought to be simple compared to the EKF algorithm since the linearization
of dynamic and measurement equations in the EKF is very demanding. The UKF algorithm is di-
vided into three main steps: selection of sigma points, propagation of the sigma points, and finally,
measurement update of the sigma points (Lee & Alfriend 2003). The propagation and measurement
update sequences are similar to the EKF algorithm, thus as the EKF, the nonlinear dynamics for
relative navigation is given same as Eq. (6). In addition, the nonlinear measurement models are used
in the nonlinear forms as Eq. (9).

AP, [ (Pl — Py) + cdt
C/AAB | PB =) T OB by Tag A), §=2,3,.,]
i - ; ; e g — iNLAB, L AB; s ] E 40, (9)
X VAL 45 } (Aphp = Dplyp) + AV,
The SD code and DD carrier phase measurements APIC/A4, AB and VAL? ‘ 4p are represented
by the geometric distances of satellite A and B from the j" GPS satellite, oy and p%, and the
relative distance, Ap?, 5. The SD ionospheric error and the SD clock error terms were canceled out
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Table 2. Initial osculating orbit parameters.

Orbit Parameters  Satellite A Satellite B

a (km) 7349.4 7349.4
3 0.039 0.039
i(deg) 98 98
w (deg) 278 278
Q (deg) 102 102
M (deg) 0 0.008

in Eq. (9). The measurement equations consist of J SD nonlinear equations and J-1 DD nonlinear
equations, therefore the 2J-1 measurement equations can be modeled to Eq. (10)

A=a*(N-k)-N (10$)

In this equation, «, 8, and « are scaling parameters, and the values are & = 9.5 x 10 -4 8 =2 and
k = 3 — L where L is 18 (Lee & Alfriend 2003). In this study, the number of states is J+12 where
I is the number of visible GPS satellites. The parameters are determined based on the experiences
resulting better performance. The 2N+1 sigma points are then propagated through the nonlinear dy-
namics and recombined to generate a propagated mean and covariance. The propagated sigma points
are updated through the measurement dynamics and also recombined, using the weighting factors,
to generate a predicted measurement (Stastny et al. 2008). The measurement noise covariance and
the cross correlation matrix are calculated, and the state estimate update and covariance update are
obtained using the Kalman gain of Eq. (12) same as the EKF algorithm.

Ky =Py (P! (1)

Here, Pkf" ¥ and P,fy are the cross correlation matrix and the measurement noise covariance. The
propagation and measurement update process should be repeated as many as the number of all sigma
points, which requires considerable computational time so that we may choose another filter for the
complex systems (Lee & Alfriend 2003). However, in this study, the process time for the UKF is
not significant factor because the UKF algorithm takes 2.5 times longer than the EKF algorithm.
Therefore, the simulation time is enough for the real-time relative navigation applications.

4. Simulation Resutls

To assess the relative navigation algorithm, the simulation is performed in case that two satellites
orbiting in the same orbit separated each other with a short baseline. In this leader-follower motion,
the distance between two satellites will change as time goes on due to the perturbations and the
ecliptic trajectory of its initial orbit although there is no applied force for orbit controls. Therefore,
we would like to estimate the baseline vectors from one satellite to another satellite in real-time for
the formation maintenance or other applications.

Real world or simulated pseudo-range measurements are required for the navigation system tests
in real-time. In this study, we will only deal with the software simulation tests, and the GPS mea-
surement data is provided by the authorized navigation simulator software (STR 6560), SIMGEN.
The software SIMGEN can provide the GPS measurements as the real GPS data including some
critical measurement errors. The software also allows the option to select the measurement error
model depending on the satellite environments; thus, the analysis of error modeling in the naviga-
tion algorithm can be possible. We use the simulated GPS measurements including the errors in
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pseudo-ranges such as tropospheric errors, ionospheric errors, and small random noise, and other er-
ror factors are not considered. A simple SIMGEN scenario has been set to test the real-time relative
navigation systems for formation flying satellites. The specifications for the satellites in the scenario
were referred to a good test platform PRISMA, the recent formation flying satellite mission, and the
simulation is performed for 10 hours after 12:00 April 28, 2008. In the simulation scenario, two
satellites are separated 1 km each other in low-Earth orbit with about 900 km altitude. Satellite mass
is 150 kg, the drag coefficient is 2.3, cross-section area for drag computation is 0.67 m 2 and the
solar radiation pressure coefficient is 1.3, referring to the study by D’mico et al. (2006). We assumed
that the shape of two satellites is identical, and the orbit parameters are summarized in Table 2. The
number of GPS satellites viewed from the two user satellites is usually more than 7 x 8 since there
is no obstacle to block the GPS signals in space, thus the elevation angle of the user satellite only
determines the GPS satellite visibility. Moreover, the two user satellites are located so close that we
can assure that the number of visible GPS satellites involved in the relative navigation algorithms is
always 6 in this study.

The several cases of simulations for absolute and relative navigation are performed for the EKF
and UKF. The navigation accuracies indicating estimation performance mean a standard deviation,
1o of position errors between true positions and estimated positions of the user satellites. The re-
quired accuracies are 1 m for absolute navigation and mm-level in relative navigation in 3-dimension.
In following subsections the navigation results are presented for the EKF and UKF and the relative
navigation performance of two filters is compared for a short baseline formation.

4.1 Absolute Navigation Results

First, the behaviors of absolute positioning errors using GRAPHIC measurements are illustrated.
For precise relative navigation, the absolute positions for each satellite are required in the relative
measurement modeling. Therefore, we should find the absolute positions of two satellites ahead of
relative positioning. Here, the algorithm test for each satellite has the exact same condition, thus
the simulation results of absolute navigation will be presented only for the one satellite, satellite A.
The filter state includes position r 4, velocity v 4, and ambiguity a 4; initial state errors for each filter
algorithm are given by a Gaussian distribution with the standard deviations of 1 km, 1 m/s, and 1
m for initial position, velocity and ambiguity vectors, which are determined as tuning parameters.
Also, the process noise covariance and measurement noise covariance are picked up empirically
as Q = diag([03 107% I3 0.25 0g]) and R, = 10 514 for the EKF algorithm. The UKF
algorithm is tested with the same initial state errors and process noise covariance matrix as the EKF
and measurement noise covariance matrix is given by R, = 1077 I,.

The navigation results are expressed in the position errors in meter as simulation time. In Figure
3, the simulation results showed a 3-dimensional accuracy of 0.973 m for the EKF. At 1500 sec
and 2800 sec, the position errors are slightly increased, however, overall absolute positions are well
estimated with the position errors of zero means and standard deviations of 0.650 m, 0.634 m, and
0.349 m in radial, transverse, and orbit normal direction, respectively. The accuracies are better
than the results of the studies of Leung & Montenbruck (2005), 2.5 m in 3-dimensional accuracy.
The 3-dimensional position error for the UKF is about 0.967 m, and the standard deviations of
errors are 0.474 m, 0.666 m, and 0.516 m for each direction. Compared with the result of EKF,
we can deduce that the performance of absolute navigation is very similar for the EKF and UKF.
The absolute positions for two filters are well estimated using GRAPHIC measurements with 1 m-
level accuracies. Errors for each direction are bounded for all the simulation time, and therefore

we can apply the absolute navigation solutions to the relative navigation algorithm for measurement
modeling.
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Figure 3. Estimated absolute position errors using EKF and UKF.

Table 3. Initial covariance matrix components for EKF.

State Casel Case2 Case3
rA (km) 1 1 10
v 4 (m/s) 1 1 10
Ar g (m) 1 10 10
Avap (m/s) 0.1 1 1
A (m) 0.05 1 5

4.2 Relative Navigation Results for EKF
The results of relative navigation using the EKF are provided in this section. For the best per-
formance, the values of process noise covariance and measurement noise covariance are determined

empirically as @ = ([0 1073 I3 03107'% 0.0025 10~2I5]) and R = [

Rap 0
6 Rvag

where Rap =2 x 10785 and Ryag = 107 x (I5 + I5).
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Figure 4. Estimated relative position errors for EKF depending on the initial covariance matrix P.

Table 4. Estimated relative position errors for EKF depending on the initial covariance matrix P.

Casel Case2 Casc3

3-D (mm) 6.39 7.37 7.76
Radial (mm) 4.08 4.80 485
Transverse (mm) 4.09 4.64 5.09

Orbit normal (mm) 271 3.12 3.28

In this matrix form, the notation 15 indicates the 5 by 5 square matrix in which all components
are 1. The Figure 4 illustrates the behaviors of the error of the relative navigation. Relative posi-
tion errors for case 1 are converged instantly and a steady-state accuracy of 6.39 mm is achieved.
Accuracies of each component are 4.08 mm, 4.09 mm, and 2.71 mm in radial, transverse, and orbit
normal direction, respectively. The values are sufficiently accurate for autonomous formation flying
applications.

Depending on the initial error covariance matrices, the filter algorithm can lead to different nav-
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Table 5. Initial covariance matrix components for UKF.

State Casel Case2 Case3
T4 (km) 1 1 1
va (m/s) 1 1 1
Arap (m) 1 1 10
Avyp (m/s) 0.1 0.1 1
A (m) 0.05 0.5 5

Table 6. Estimated relative position errors for UKF depending on the initial covariance matrix P.

Casel Case2 Case3

3-D (mm) 7.25 11.6 10.9
Radial (mm) 4.18 7.44 6.38
Transverse (mm) 4.59 7.23 7.10

Orbit normal (mm) 3.74 5.29 5.24

igation performances. Here, the initial error covariance means the values of initial state errors. Thus,
we will compare the filter performances for several cases of different initial state errors. The fil-
ter states consist of position 74, velocity v,, relative position Ar 45, relative velocity Av4p, and
double-differential ambiguity vector A. Each component of the initial state errors is summarized in
Table 3 for 3 cases. The case 1 in Table 3 is corresponding to the best performance case and the
cases of large initial state errors are given by the case 2 and case 3 in Figure 4. The 3-dimensional
accuracies of relative positions are 6.39 mm, 7.37 mm, and 7.76 mm for case 1, case 2, and case3,
respectively and the standard deviations of the position errors for each direction are summarized in
Table 4. These accuracies are almost the same level, and the steady state relative position errors
have similar trends in Figure 4. Furthermore, the ambiguity states including initial errors will be
determined to the correct integer values soon, and the estimation errors can converge into zero mean
within a few steps since we only deal with the relative navigation algorithm of a short baseline for-
mation. Therefore, we can conclude that the appropriate initial state errors can assure an affordable
performance for relative navigation.

4.3 Relative Navigation Results for UKF

The relative navigation performance using UKF is presented and compared with the EKF results.
The several cases of the different initial covariance matrices are tested using the values in Table 5.
The UKF relative position accuracies with respect to the initial covariance matrix are represented
in Table 6, and the position error performances for 3 cases of initial covariance matrices are shown
in Figure 5. The relative position errors of the case 1 have the initial peaks of +0.1 m and the
errors converge to zero mean rapidly. The position errors in all directions show good performances
and the standard deviations for each direction are 4.18 mm, 4.59 mm, and 3.74 mm for radial,
transverse, and orbit normal direction. Therefore, we can conclude that the magnitudes of position
errors are compatible for the EKF results, For the case 2 and case 3, the estimation errors have
the similar trend in all directions, however, the initial oscillations for transverse and orbit normal
directions are relatively large compared to the case 1. The 3-dimensional difference accuracies
for case 2 and case 3 are 11.6 mm and 10.9 mm, which is larger than the required accuracy i.e.,
mm-level. This indicates that the EKF algorithm performance is better than the UKF performance
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Figure 5. Estimated relative position errors for UKF depending on the initial covariance matrix P.

when the initial covariance is large. In general, however, the initial covariance for each filter is not
applied in the same way; rather the tuning parameters like initial covariance matrices are selected
independently for the best performance case. The UKF noise covariance for the best case is given
by Q = diag([0310~"" I 031073 Iy 0.0025 1072I5]) and R = [ Rg” R 0 } where

VA
Rap =2x107°%Ig and Ryag = 1071 x (I5 + I5).

4.4 Comparison of Relative Navigation Performance between EKF and UKF

The relative navigation performance for the EKF and UKF is compared for the same order of
initial state errors in Figure 6. For a short baseline, the same initial state errors of 1 km, 1 mv/s,
1 m, 10 cmy/s, and 0.05 m are used for two filters, and it is expected to have similar performance.
The dynamic equations and measurement equations are the same, and the measurement noise and
process noise covariance matrices have only different values depending on the filter type. In Fig-
ure 6, the position errors for the two filters show the similar trends. Although the initial position
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Figure 6. EKF and UKF performance comparison.

error is different in each direction, the steady state relative position errors become almost same after
2,000 sec from the simulation start. Better performances can be expected for the UKF since the
linearization approximations are not applied; however, the overall relative navigation performances
are nearly same for the two filters. This is because that the EKF algorithm has become less sensitive
to the linearization errors of the measurement equations by using the modified measurement model
and the initial baseline of two satellites in formation is relatively short. If a distance for the forma-
tion flying satellites is longer than 10 km, then the linearization errors for the dynamic model and
measurement model of EKF may be significant.

5. Conclusions

The primary objective of this study is to develop the navigation algorithm and validate the esti-
mated relative navigation performances in real-time for autonomous formation flying using single-
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frequency GPS measurements. For the main contribution for this study, we have been developed
the UKF algorithm as well as the EKF for relative navigation. Several cases of simulations are
performed, and finally, the steady-state 3-dimensional relative position accuracies of mm-level have
been achieved for the two filters using the simulated GPS measurements.

The 3-dimensional absolute and relative position accuracies over 1 km baseline in LEO satellite
are about 0.973 m and 6.39 mm for the EKF and 0.967 m and 7.25 mm for the UKF. Therefore,
the aimed overall relative navigation accuracy of sub-cm has been achieved for the EKF and the
UKEF algorithms and ambiguity resolution is successful in real-time using LABDA method. The
relative navigation performances of two filters have shown the similar trends, and the 3-dimensional
accuracies are same order. Also, it takes 2.5 times longer for the UKF algorithm to be simulated
than the EKF algorithm. Although the UKF algorithm requires longer simulation time than the EKF,
the real-time processing of the UKF is allowed for the satellite relative navigation. From the earlier
results, therefore, it is concluded that this study can provide the relative position accuracy enough for
autonomous formation flying missions and might be a basis for further scientific applications such
as high resolution interferometry and autonomous rendezvous.
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