Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.4.287

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements  

Kang, Dae-Eun (Department of Astronomy, Yonsei University)
Park, Sang-Young (Department of Astronomy, Yonsei University)
Son, Jihae (Department of Astronomy, Yonsei University)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.4, 2018 , pp. 287-293 More about this Journal
Abstract
This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.
Keywords
relative orbit navigation; satellite formation flying; global positioning system (GPS); laser measurement;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Park HE, Park SY, Lee SJ, Choi KH, Analysis of linear and nonlinear relative orbit dynamics for satellite formation flying, J. Astron. Space Sci. 26, 317-328 (2009). https://doi.org/10.5140/JASS.2009.26.3.317   DOI
2 Park IK, Park SY, Choi KH, Choi SK, Park JU, Filtering performance analyzing for relative navigation using single difference carrier-phase GPS, J. Astron. Space Sci. 25, 283-290 (2008). https://doi.org/10.5140/JASS.2008.25.3.283   DOI
3 Park JI, Park HE, Park SY, Choi KH, Hardware-in-the-loop simulations of GPS-based navigation and control for satellite formation flying, Adv. Space Res. 46, 1451-1465 (2010). http://doi.org/10.1016/j.asr.2010.08.012   DOI
4 Shin K, Oh H, Park SY, Park C, Real-time orbit determination for future Korean regional navigation satellite system, J. Astron. Space Sci. 33, 37-44 (2016). https://doi.org/10.5140/JASS.2016.33.1.37   DOI
5 Sim SH, Park SY, Choi KH, Autonomous real-time relative navigation for formation flying satellites, J. Astron. Space Sci. 26, 59-74 (2009). https://doi.org/10.5140/JASS.2009.26.1.059   DOI
6 Candela L, Formaro R, Guarini R, Loizzo R, Longo F, et al., The PRISMA mission, in 2016 IEEE IGARSS, Beijing, China, 10-15 Jul 2016.
7 Hwang IY, Park SY, Park C, Collision avoidance algorithm for satellite formation reconfiguration under the linearized central gravitational fields, J. Astron. Space Sci. 30, 11-15 (2013). https://doi.org/10.5140/JASS.2013.30.1.011   DOI
8 Jung S, Park SY, Park HE, Park C, Kim SW, et al., Real-time determination of relative position between satellites using laser ranging, J. Astron. Space Sci. 29, 351-362 (2012). https://doi.org/10.5140/JASS.2012.29.4.351   DOI
9 Kang DE, Park SY, Lee J, A satellite relative navigation based on hardware characteristics of femtosecond laser, Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17), Rome, Italy, 8-10 Jun 2017.
10 Kim Y, Park SY, Lee E, Kim M, A deep space orbit determination software: overview and event prediction capability, J. Astron. Space Sci. 34, 139-151 (2017). https://doi.org/10.5140/JASS.2017.34.2.139   DOI
11 Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, et al., TanDEM-X: a satellite formation for high-resolution SAR interferometry, IEEE Trans. Geosci. Remote Sens. 45, 3317-3341 (2007). https://doi.org/10.1109/TGRS.2007.900693   DOI
12 Lee J, Park SY, Kang DE, Relative navigation with intermittent laser-based measurement for spacecraft formation flying, J. Astron. Space Sci. 35, 163-173 (2018). https://doi.org/10.5140/JASS.2018.35.3.163
13 Kroes R, Montenbruck O, Bertiger W, Visser P, Precise GRACE baseline determination using GPS, GPS Solut. 9, 21-31 (2005). https://doi.org/10.1007/s10291-004-0123-5   DOI
14 Lee E, Park SY, Shin B, Cho S, Choi EJ, et al., Orbit determination of KOMPSAT-1 and Cryosat-2 satellites using optical wide-field patrol network (OWL-Net) data with batch least squares filter, J. Astron. Space Sci. 34, 19-30 (2017a). https://doi.org/10.5140/JASS.2017.34.1.19   DOI
15 Lee E, Kim Y, Kim M, Park SY, Development, demonstration and validation of the deep space orbit determination software using lunar prospector tracking data, J. Astron. Space Sci. 34, 213-223 (2017b). https://doi.org/10.5140/JASS.2017.34.3.213   DOI
16 Lee K, Oh H, Park HE, Park SY, Park C, Laser-based relative navigation using GPS measurements for spacecraft formation flying, J. Astron. Space Sci. 32, 387-393 (2015). https://doi.org/10.5140/JASS.2015.32.4.387   DOI
17 Montenbruck O, Ebinuma T, Lightsey EG, Leung S, A real-time kinematic GPS sensor for spacecraft relative navigation, Aerosp. Sci. Technol. 6, 435-449 (2002). https://doi.org/10.1016/S1270-9638(02)01185-9   DOI
18 Oh H, Park HE, Lee K, Park SY, Park C, Improved GPS-based satellites relative navigation using femtosecond laser relative distance measurements, J. Astron. Space Sci. 33, 45-54 (2016). https://doi.org/10.5140/JASS.2016.33.1.45   DOI