• Title/Summary/Keyword: reinforcement design

Search Result 1,854, Processing Time 0.027 seconds

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

A study on the fire resistance method using FR-ECC in long tunnel (고인성내화모르터(FR-ECC)를 사용한 장대터널 내화안전대책에 관한 연구)

  • Kim, Se-Jong;Kim, Dong-Jun;Kwon, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • The spalling phenomenon occurs in high-strength concrete when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis of the factors, the preventing methods from the spalling are known as reduction of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the reduction of temperature increase was proposed as the most effective spalling-preventing method among the spalling-preventing methods. Engineered cementitious composite for fireproof and repair materials was developed in order to protect the new and existing RC structures form exterior deterioration factors such as fire, cloride ion, etc. This study was carried out to estimate the fire-resisting performance of high strength concrete slab or tunnel lining by repaired engineered cementitious composite (ECC) or fiber reinforcement cemetitious composite (FRCC) under fire temperature curve. and them we will descrike the result of HIDA tunnel in Japan.

Improvement of condition assessment criteria and embankment transformation of agricultural reservoirs after raising embankments

  • Lee, Dal-Won;Lee, Young-Hak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.258-274
    • /
    • 2016
  • Recently, as fluctuations in annual precipitations continue to grow, the frequency of floods and droughts is rapidly increasing. Especially, since many reservoirs are reported as having less capacity and aging faster than large dams, the damages due to floods and droughts are estimated to become more severe. With this background for the present study, field investigation of reservoirs in Chungnam, Chungbuk, and Chonbuk regions was carried out for disaster prevention and the safety management of agricultural reservoirs. Furthermore, embankment transformations were compared and analyzed after the raising of embankments. Based on design methods for remodeling agricultural reservoirs and the results of embankment raising and the problems which occurred on crest, supplementation to the upstream and downstream slopes, control sector, and spillway should be implemented in the existing reservoir. In regard to this, the condition assessment score of compound member of reservoirs was performed, the Chungnam region score was in the 3.11-4.73 range. In addition, reservoirs in Chungbuk scored in the 4.00-4.49 range, and reservoirs in Chonbuk scored in the 3.90-4.60 range. Applying current precision safety inspection practices to small reservoirs requires economic expenses and time, for which assessment items are too varied and complex. Therefore, subdivided condition assessment items and criteria should be improved and streamlined by deleting, reducing, combining, and selecting only the riskiest factors. In the future, reservoirs should be periodically monitored and systemically managed and rational plans for maintenance and repairs should be used as reinforcement methods.

Modeling of Electromagnetic Wave Propagation for Detection of Bond Delamination in Concrete (콘크리트 보강재 박리 검사를 위한 전자파 모델링)

  • 남연수;임홍철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.261-269
    • /
    • 2004
  • The existing concrete beams can be retrofitted or reinforced by attaching carbon fiber or glass fiber sheet beneath the beams. Although diverse design methods and application techniques of the retrofitting are studied and developed, the testing method of examining retrofitted beams have not been put into practice yet. In this study, a bond delamination has been modeled and studied to provide a basis for the development of actual testing equipments. For this purpose, Gaussian and sinusoidal waves with 3GHz and 5GHz center frequency are used as an incident wave and 1mm and 3mm bond delamination under the reinforcement are modeled. In the modeling, Finite Difference-Time Domain algorithm is used to investigate the behavior of electromagnetic waves in concrete. The results have shown that 5GHz waves are suitable for the detection of delamination.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

Parametric Study for Hole Machining in Natural Fiber Composites (천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구)

  • Lee, Dong-Woo;Oh, Jung-Suck;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, natural fiber composites including flax fiber reinforcement was manufactured. It was tried to find optimum design of drill and machining factor for minimizing the damage during hole machining in natural fiber composites. Taguchi optimization was used for minimizing the number of experiments and evaluation of the effect of machining factor during hole machining in natural fiber composites. The experimental results indicate that the newly designed drill distributes cutting resistance well and minimizes surface roughness and produces fine surfaces. Developed new drill has been dispersed in the cutting resistance during processing, it was possible to obtain the smooth hole surface. Also, it was found that optimal rotational speed and feed rate of drill for hole machining.

Design of Battery-Supporting Structure for Reducing Deflection of On-Line Electric Vehicles (OLEV의 처짐량 개선을 위한 배터리 지지구조물 설계)

  • Park, Hong-Ik;Yoo, Ji-Sue;Lee, Jun-Young;Lee, Sang-Beom;Yim, Hong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • This paper presents methods to reduce the deflection of the battery-supporting structure on on-line electric vehicles (OLEVs). First, by testing various battery locations, a location is found that increases the dynamic stiffness of the OLEV. Second, static analysis is conducted to analyze the maximum deflection caused by the battery weight. In order to reduce the amount of deflection, the contributions of the battery-supporting structures are analyzed, and reinforcements are inserted. Then, another static analysis is conducted to compare the results of the base model and modified model. Consequently, through the static analysis, both the base model and modified model are similarly improved in terms of deflection, but the modified model is better than the base model at reducing the mass.

A Study on the Moderating Effect that Value Congruence Influences Organizational Performance

  • LEE, Joon-Pyo
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.3
    • /
    • pp.51-62
    • /
    • 2020
  • Purpose - This study examined the relationship between individual creativity and its related variables to observe how individual creativity contributes to organizational performance. In addition, this study strived to explore how to maximize the utilization of individual creativity and innovate the structure of the organization itself so that teams and organizations can respond more effectively to new rising trends. this study aimed to examine whether the value congruence between individuals and organizations (propensity congruence, goal congruence has a significant impact on knowledge sharing and innovation behavior as dependent variables by exerting individual creativity and synergy as independent variables. Research design, data and methodology - SPSS 24.0 program were used to analyze the data. Descriptive Statistics and correlation analysis were performed, and the reliability factor (Cronbach's α) was calculated. Afterwards, we analyzed the moderating effects of structural equation model analysis and hierarchical regression analysis. The number of samples used in the study were 309 copies. Results - First, Individual creativity had a positive effect on knowledge sharing and innovative behavior. In other words, it was confirmed that decision-making processes fused with individual creativity could create an atmosphere of knowledge sharing and transform the organization. Second, value congruence adjusted the influence of individual creativity on knowledge sharing and innovation behavior. Conclusions - First, it is important for managers to recognize the value and secure the pool of creative talents who will be a potential future basic source of organizational success and competitive advantage. Second, managers should be able to identify those with creative talents and expertise, and use them to increase their knowledge sharing performance, while also developing emotional and motivational creativity. Third, in order improve knowledge sharing performance, managers should pay attention to the emotional aspect of creativity. Fourth, managers should strive to create an environment that is beneficial for the reinforcement of individual self-management capabilities. Fifth, managers should be able to develop decision-making processes to develop potential creativity and encourage creative thinking, opinions, or solutions. Sixth, managers should promote the dissemination and integration of new knowledge based on the creative views and attitudes of team members.

Experimental Investigations on the Flexural Behavior of One-Way Concrete Slabs Reinforced with GFRP Re-Bar Bundle (유리섬유 보강 플래스틱 Re-Bar 다발로 보강된 1방향 콘크리트 슬래브의 휨거동에 관한 실험적 연구)

  • 윤순종;김병석;유성근;정재호;정상균
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • In recent years, the investigation on the development of fiber reinforced plastic(FRP) Re-Bar has been greatly increased due to the attractive physical and mechanical properties of FRP. The primary reason of such a tendency is in the fact that it does not ordinarily cause durability problems such as those associated with steel reinforcement corrosion. This study is an experimental investigation on the flexural behavior of one-way concrete slabs, which can be used to construct bridge deck, reinforced with GFRP Re-Bar bundle. The tensile tests of GFRP Re-Bar produced by domestic industry and third point bending tests of one-way slab specimens reinforced with GFRP Re-Bar bundle are peformed. For all slab specimens, load-deflection relations are predicted by using the ACI committee 440 and the results are compared with experimental ones. In order to establish the design criteria or guidelines of concrete flexural member reinforced with FRP Re-Bar, it is needed to evaluate the serviceability limit state as well as the strength limit state.