• Title/Summary/Keyword: reinforced earth method

Search Result 129, Processing Time 0.029 seconds

Instrumented Field Performance of an Isolated-Reinforced Earth Wall (분리형 보강토옹벽의 현장계측 및 분석)

  • 김영윤;한경제;김경모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.117-124
    • /
    • 2000
  • As the reinforced earth wall is constructed with step by step backfill compaction method, the accumulative horizontal deformation is inevitable. It has been reported that about 80% of horizontal deformation is occurred during the construction stage of reinforced earth retaining wall. To reduce the horizontal deformation, an isolated-reinforced earth wall method(KOESWall system) was newly developed. In this system, the reinforced earth is constructed first with reinforcements and backfills only, and then facing blocks are installed after the horizontal displacement of reinforced earth is fully occurred. To evaluate the effect of a construction method and the performance of KOESWall system, two cases of full scale field performance was monitored during and after the construction stages.

  • PDF

Analysis of the Behavior of Reinforced Earth Retaining Walls Constructed on Soft Ground Using the Replacement Method (치환공법을 적용한 연약지반에 시공된 보강토옹벽의 거동해석)

  • Ki, Wan-Seo;Joo, Seung-Wan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.601-613
    • /
    • 2007
  • It is reported that factors affecting the behavior of reinforced earth retaining walls built on soft ground are not only basic physical properties but also the increase of load by the reinforced earth retaining walls, consolidation period, pore water pressure, etc. This study analyzed the behavior of reinforced earth retaining walls and soft ground using SAGE CRISP, a ground analysis program. First, we examined the effect of the replacement method, which was to prevent the excessive displacement of reinforced earth retaining walls, in improving the behavior of the walls. Second, we compared and analyzed how the behavior of ground is affected by the vertical interval of stiffeners on the back of reinforced earth retaining walls after the application of the replacement method. Lastly, we proposed the optimal replacement width and depth in the application of the replacement method. The results of this study proved that the replacement method is considerably effective in improving the behavior of reinforced earth retaining walls. In addition, the vertical interval of stiffeners on the back of reinforced earth retaining walls appeared effective in improving the horizontal displacement of the top of retaining walls but not much effective in improving the vertical displacement of the back of retaining walls. In addition, improvement in horizontal-vertical displacement resulting from the increase in replacement width was not significant and this suggests that the increase of replacement width is not necessary. With regard to an adequate replacement depth, we proposed the ratio of replacement depth to the height of retaining walls(D/H) according to the ratio of the thickness of the soft layer to the height of retaining walls(H/T).

Reinforced Effect of Earth Body Reinforced by Attachment-type Geogrid (부착형 지오그리드 보강토체의 보강효과)

  • 고태훈;이성혁;황선근;이진욱
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.277-282
    • /
    • 2002
  • The objective of this study is to suggest the optimal method for reinforced earth retaining wall through the appropriate selection of reinforcing materials, development of design criteria. Thus, the efficient land utilization and securing safety in the train operation in service lines could be achieved. For this goal, a large scale shear laboratory test was carried out to evaluate the reinforced effect of earth body reinforced by attachment-type geogrid.

  • PDF

The Development and Application of KOESWall System (분리형 보강토 옹벽의 개발 및 적용사례)

  • 김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.323-328
    • /
    • 2001
  • In the ordinary reinforced earth wall, which was constructed by incremental construction method, the horizontal deformation of the facing due to the compaction induced horizontal earth pressure was unavoidable. Thus the KOESWall system which are adopted the isolated construction method was developed by I&S Eng. Co., Ltd. in 1999. Due to its systematical feature, KOESWall system is able to minimizes the horizontal deformation of reinforced wall effectively and it can be used as temporary structures more economically without the lacing block. In this report, it is shown that the concept and case histories of KOESWall system as a retaining structures.

  • PDF

Numerical Analysis for Optimum Reinforcement Length Ratio of Reinforced Earth Retaining Wall (보강토옹벽의 최적 보강길이비 산정을 위한 수치해석적 연구)

  • Park, Choonsik;Ahn, Woojong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.5-14
    • /
    • 2018
  • Recently, method of reinforced earth retaining wall have been proposed according to the material of facing, geosynthetic, construction method, and facing slope. However, the regulations such as the design method and detailed review items according to each construction method are not clear, and collapse due to heavy rainfall frequently occurs. In this study, to obtain a more stable technical approach in the design of reinforced earth retaining wall, the combination of the pullout failure of reinforced earth retaining wall and the optimal reinforcement ratio of height using reinforced earth retaining wall using a single strength reinforcement is assumed, optimum design of stiffener, optimal design of superimposed wall and optimum length ratio of reinforcement material of geosynthetics are proposed through safety factor according to reinforcement length ratio (L/H).

A Study on the Development of Reinforced Earth wall by Geotextile (토목섬유를 이용한 보강토옹벽의 개발)

  • 도덕현;유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.63-73
    • /
    • 1986
  • The model was developed by applying the principles of Bacot and Vidal to measure the behavior of deformation of the reinforced earth wall, and various tasts were performed by using the plastic fabric filter and the galvanized steel plate as a strip. The results obtained are as follows; 1. When the reinforced earth wall is deformed by the load, the strip is completely reinforced by the backfill materials and changed to the rigid block state, under the state of failure which permits sliding only, the next theoretical equation is formed. (H/L) . tan$\theta$ [cosO-sinOtanO] =2sinO[tan($\theta$ +0) +tanO] 2.The degree of the mutual reinforcement of the backfill material and the strip depend on the physical characteristics of the each material especially the angle of shearing resistance of the backfill material is desirable over 20$^{\circ}$ and, if it is over 400, its function could be a maximum. 3.The distribution of the maximum tensile strain of the reinforcement is changing with the height of reinforced earth wall, and when the height from bottom of the reinforced earth wall is 1.85 to 3. 35m, the maximum tensile strain appears at 2m from the skin element. The maximum tensile strain is increased by the depth of the reinforced earth wall from surface, and increased with the lapse of time after construction. 4.The failure surface of the reinforced earth wall by the concrete skin was about 60$^{\circ}$and the failure behavior of the reinforced earth wall in which the fabric filter was buried was slow, and so the pore pressure could be decreased. 5.It is possible to construct the fabric retained earth wall by the plastic fabric filter only. And the reinforcing effect between the steel plate and the plastic fabric filter is not largely different. however, in the aspect of the economic durability, the plastic fabric filter is more advantageous. 6.The reinforcing action mainly depends on the width and the length of the reinforcing materials, if possible, the full width is advantageous to enlarge the contact area with backfill. but considering the economic aspect, it is neccessary to develop the method controlling the space of the strip.

  • PDF

A case study on reinforcement and design application of reinforced earth wall using micro pile (마이크로 파일을 이용한 블록식 보강토옹벽의 보강 및 설계적용 사례 연구)

  • Hong, Kikwon;Han, Jung-Geun;Lee, Kwang-Wu;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.161-167
    • /
    • 2014
  • This paper describes reinforcement method of reinforced earth wall near the abutment. The excessive displacement of a case affected by reduction of bearing capacity due to macro-environment condition like a coast. That is, the front displacement of reinforced earth wall has been happening continuously due to strength reduction of foundation ground. The micro pile is applied to reinforcement method, in order to secure a bearing capacity and global slope stability of reinforced earth wall. The results of numerical analysis confirmed that reinforcement method based on micro pile can secure a stability of structure, while the reconstruction of reinforced earth wall is impossible by construction and macro-environment condition.

A Study on the Application of Soil-Reinforced Retaining Wall for Excavation Slope (절토사면에서 보강토 옹벽의 적용성 연구)

  • Byun, Yoseph;Wrryu, Woongryeal;Lee, Dongho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • Considering environmental issues and lack of space, it is a necessity to minimize the amount of excavation. Various types of excavation methods are being used in practice. This study proposes a reasonable method for estimating the earth pressure acting on a reinforced wall in front of a excavated slope. The measured data in the field and numerical analyses were used. Results of the study shows that the earth pressure acting on the excavated wall is less than that estimated by Rankine's equations. It was shown that when the excavated slope is used with the reinforced wall, the pressures acting on the reinforced wall can be greatly reduced.

Problem of Evaluation Methods on the Wall Facing-Geosynthetics Connection Strength and Its Improvement (전면 벽체-보강재 연결강도 평가방법의 문제점 및 개선 방향)

  • Hong, Ki-Kwon;Shin, Ju-Oek;Han, Jung-Geun;Cho, Sam-Deok;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.184-195
    • /
    • 2008
  • The use of geosynthetics for the reinforced earth wall system has been increasing rapidly for a number of years. The connection strength between wall facing and geosynthetics should be evaluated in the design of geosynthetics. However, the connection strength is not often evaluate, exactly, and it causes problems such as deformation of the wall facing, local failure of the reinforced earth wall system, conservative design and so on. Therefore, the connection strength in the design of geosynthetics should be applied evaluation result by reasonable method. This study is evaluated connection strength using the typical design method, NCMA(1997) and FHWA(1996), in the field case. Then the results compared with the evaluation results of connection strength, which is suggested by Soong & Koener(1997). The analysis results confirmed that the connection strength for the design of geosynthetics should be evaluate using reasonable method with considering various factor, such as safety factor, installation and importance of construction.

  • PDF