DOI QR코드

DOI QR Code

Numerical Analysis for Optimum Reinforcement Length Ratio of Reinforced Earth Retaining Wall

보강토옹벽의 최적 보강길이비 산정을 위한 수치해석적 연구

  • Park, Choonsik (School of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • Ahn, Woojong (Research Institute, Research Institute of Sejin ENC)
  • Received : 2018.08.04
  • Accepted : 2018.11.27
  • Published : 2018.12.01

Abstract

Recently, method of reinforced earth retaining wall have been proposed according to the material of facing, geosynthetic, construction method, and facing slope. However, the regulations such as the design method and detailed review items according to each construction method are not clear, and collapse due to heavy rainfall frequently occurs. In this study, to obtain a more stable technical approach in the design of reinforced earth retaining wall, the combination of the pullout failure of reinforced earth retaining wall and the optimal reinforcement ratio of height using reinforced earth retaining wall using a single strength reinforcement is assumed, optimum design of stiffener, optimal design of superimposed wall and optimum length ratio of reinforcement material of geosynthetics are proposed through safety factor according to reinforcement length ratio (L/H).

최근 국내에 사용되고 있는 보강토옹벽 공법은 전면체의 재질, 보강재, 축조방법, 축조경사에 따라 수많은 종류가 제안되었으나 각 공법에 따른 설계방법이나 상세검토항목 등의 규정이 명확하지 않으며 집중호우에 따른 붕괴도 빈번하게 발생하고 있는 실정이다. 본 연구에서는 이러한 보강토옹벽의 설계에 있어서 좀 더 안정된 기술적 접근을 위해 설치높이별 단면을 가정하고 단일 강도의 보강재를 사용한 보강토옹벽의 인발파괴와 높이별 최적의 보강재 조합을 산정하고 산정된 각 단면에 대해서 보강길이비(L/H)에 따른 안전율 변화를 통하여 보강재의 최적 설계와 다단식 보강토옹벽의 최적 설계 그리고 보강재인 토목섬유의 재질에 따른 최적 길이비를 산정하여 제시하였다.

Keywords

HJHGC7_2018_v19n12_5_f0001.png 이미지

Fig. 1. Process flow chart

HJHGC7_2018_v19n12_5_f0002.png 이미지

Fig. 2. Section S1 (Facing slope=1:0.05)

HJHGC7_2018_v19n12_5_f0003.png 이미지

Fig. 3. Section S2 (Facing slope=1:0.2)

HJHGC7_2018_v19n12_5_f0004.png 이미지

Fig. 4. Section S3 (Facing slope=1:0.3)

HJHGC7_2018_v19n12_5_f0005.png 이미지

Fig. 5. Optimum geotextile combination of facing slope S1

HJHGC7_2018_v19n12_5_f0006.png 이미지

Fig. 6. Optimum geotextile combination of facing slope S2

HJHGC7_2018_v19n12_5_f0007.png 이미지

Fig. 7. Optimum geotextile combination of facing slope S3

HJHGC7_2018_v19n12_5_f0008.png 이미지

Fig. 8. Change in safety factor according to reinforcement length ratio (L/H) of S1 (MSEW)

HJHGC7_2018_v19n12_5_f0009.png 이미지

Fig. 9. Change in safety factor according to reinforcement length ratio (L/H) of S1 (SLOPE/W)

HJHGC7_2018_v19n12_5_f0010.png 이미지

Fig. 10. Change in safety factor according to reinforcement length ratio (L/H) of S2 (MSEW)

HJHGC7_2018_v19n12_5_f0011.png 이미지

Fig. 11. Change in safety factor according to reinforcement length ratio (L/H) of S1 (SLOPE/W)

HJHGC7_2018_v19n12_5_f0012.png 이미지

Fig. 12. Change in safety factor according to reinforcement length ratio (L/H) of S2 (MSEW)

HJHGC7_2018_v19n12_5_f0013.png 이미지

Fig. 13. Change in safety factor according to reinforcement length ratio (L/H) of S1 (SLOPE/W)

HJHGC7_2018_v19n12_5_f0014.png 이미지

Fig. 14. Section and condition of superimposed wall

HJHGC7_2018_v19n12_5_f0015.png 이미지

Fig. 15. Strain-tensile strength curve by type of geogrids (Han et al., 2012)

HJHGC7_2018_v19n12_5_f0016.png 이미지

Fig. 16. Calculation overburden load of superimposed wall (NCMA, 1998)

HJHGC7_2018_v19n12_5_f0017.png 이미지

Fig. 17. Change in safety factor according to reinforcement length ratio (L/H) of superimposed wall

HJHGC7_2018_v19n12_5_f0018.png 이미지

Fig. 18. Geosynthetics fracture ratio of PET geogrid

HJHGC7_2018_v19n12_5_f0019.png 이미지

Fig. 19. Optimum geogrid combination (H=6.0m, L=4.2m)

HJHGC7_2018_v19n12_5_f0020.png 이미지

Fig. 20. Optimum geogrid combination (H=7.0m, L=4.6m)

HJHGC7_2018_v19n12_5_f0021.png 이미지

Fig. 21. Optimum geogrid combination (H=8.0m, L=5.2m)

HJHGC7_2018_v19n12_5_f0022.png 이미지

Fig. 22. Optimum geogrid combination (H=9.0m, L=5.9m)

HJHGC7_2018_v19n12_5_f0023.png 이미지

Fig. 23. Optimum geogrid combination (H=10.0m, L=6.2m)

Table 1. Properties of geosynthetics

HJHGC7_2018_v19n12_5_t0001.png 이미지

Table 2. Geosynthetics fracture ratio of facing slope S1

HJHGC7_2018_v19n12_5_t0002.png 이미지

Table 3. Geosynthetics fracture ratio of facing slope S2

HJHGC7_2018_v19n12_5_t0003.png 이미지

Table 4. Geosynthetics fracture ratio of facing slope S3

HJHGC7_2018_v19n12_5_t0004.png 이미지

Table 5. Layout optimum geotextile combination of facing slope S1

HJHGC7_2018_v19n12_5_t0005.png 이미지

Table 6. Layout optimum geotextile combination of facing slope S2

HJHGC7_2018_v19n12_5_t0006.png 이미지

Table 7. Layout optimum geotextile combination of facing slope S3

HJHGC7_2018_v19n12_5_t0007.png 이미지

Table 8. Length/Height (L/H) for optimal design of geosynthetics

HJHGC7_2018_v19n12_5_t0008.png 이미지

Table 9. Design of superimposed MSE wall (FHWA, 1997)

HJHGC7_2018_v19n12_5_t0009.png 이미지

Table 10. Safety factor according to Length/Height ratio (L/H)

HJHGC7_2018_v19n12_5_t0010.png 이미지

Table 11. Length/Height (L/H) for optimal design of superimposed wall

HJHGC7_2018_v19n12_5_t0011.png 이미지

References

  1. 국토해양부 (2011), 건설공사 비탈면 설계기준, pp. 109-118.
  2. 국토해양부 (2013), 건설공사 보강토옹벽 설계.시공 및 유지 관리 잠정지침, Ch. I-III.
  3. 한국도로공사 (2009), 고속도로 건설공사 보강토옹벽 설계기준.
  4. FHWA (1997), Desigen Manual for Segmental Retaining Walls 2nd Ed., NCMA, Virginia.
  5. Han, S. H., Yea, G. G. and Lee, K. W. (2012), Tensile strength - strain relationship of various geogrids, Journal of the Korean Geo-Environmental Society, No. 13, Vol. 2, pp. 83-93 (In Korean).
  6. Koerner, R. M. (2005), Designing with geosynthetics fifth edition, Pearson Education, Inc., pp. 41-44.
  7. NCMA (1998), Segmental Retaining Walls-Seismic Design Manual, National Concrete Masonry Association, Virginia, U.S.A.