• 제목/요약/키워드: reinforced concrete slab

검색결과 501건 처리시간 0.026초

섬유망을 이용한 RC슬래브의 균열제어 (The Crack Control of Fiber Net Reinforced RC Slab)

  • 배주성;김경수;김남욱;김철민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.225-231
    • /
    • 2002
  • Severe cracks on Reinforced Concrete (RC) structures caused by structural displacement can be often one of the main reasons for the degradation of tensile and flexural rigidities of RC structures and for the deterioration of durability and serviceability of RC structures through accelerated steel corrosion. These combined factors adversely affect the performance of RC concrete, leading to shortened life time of RC structures. In consideration of these problems, we conducted 3 point bending experiments by employing three different types of concrete specimens: fiber-net reinforced concrete (FNRC), polypropylene-fiber reinforced concrete (PFRC), and plain concrete (PC). FNRC is well known for its strong corrosion resistance, light self-weight, and excellent tensile strength, while PFRC is known to be effective in crack control. FNRC was found to have the best first and final crack resistances followed by PFRC and PC, as evidenced by the highest initial crack load and the smallest final crack width, respectively. The FNRC specimens with various tensile strength of fiber net exhibited greater ultimate strengths than those for PFRC and PC. Furthermore, the crack widths of FNRC specimens were smaller than those calculated by the crack-width estimation equation of the KCI and ACI code. Therefore, we conclude that fiber net reinforcement is effective not only on crack control, but also on loading share.

직교이방성판 이론에 의한 콘크리트 슬래브의 탄성해석 (Elastic Analysis of Reinforced Concrete Slab Using Orthotropic Plate Theory)

  • 정재호;정성우;윤순종
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.487-492
    • /
    • 1997
  • Two-way concrete slab is often modeled as an orthotropic plate. In the modeling, flexural rigidities of the slab which depend upon the re-bar quantity have to be taken into account. Elastic equivalence technique in which the equilibrium and compatibility of the cross-section of slab satisfied is utilized to determine th flexural rigidities. In the analysis Navier's method is applied on the concrete slab with all edges simply supported under inform lateral load. In addition to the analysis using orthotropic plate theory, finite element method is also adopted to suggest the finite element modeling and to investigate the applicability of the method. Results obtained by both methods were compared and it is observed that the difference of the results was increased as the ratio of re-bar quantity increased.

  • PDF

압출성형 ECC 패널을 이용하여 제작된 복합바닥슬래브의 휨 거동 (Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel)

  • 조창근;한병찬;이정한;김윤용
    • 콘크리트학회논문집
    • /
    • 제22권5호
    • /
    • pp.695-702
    • /
    • 2010
  • 이 연구에서는 고인성 압출성형 ECC 패널을 이용한 철근콘크리트 복합바닥슬래브 시스템을 개발하였다. 철근콘크리트 슬래브에서의 균열은 특히 주차장, 지하구조물, 및 빌딩구조물 등에서 종종 실제적으로 문제가 되곤 한다. 프리캐스트 제품으로 압출성형 공정에 의해 제조된 ECC 패널은 균열을 제어하는 고품질의 측면에서 뿐만 아니라 ECC 패널이 현장타설 콘크리트와 함께 무거푸집 또는 하프프리캐스트 공법을 실현할 수 있으므로 콘크리트 슬래브 공사의 적용에도 장점이 있다. 개발된 바닥슬래브 시스템은, 두께 10 mm의 압출성형 ECC 패널을 슬래브 하부에 두고, 그 위에 철근을 조립 및 설치한 후, 마지막으로 현장타설의 콘크리트를 후타설하여 만들어지도록 구성되어 있다. 개발된 슬래브 시스템의 성능검증을 위해 기존 철근콘크리트 슬래브와 비교하여 4점 휨 실험을 수행하였다. 실험 결과, 압출성형 ECC 패널을 적용한 바닥구조 시스템은 휨 균열 제어와 내력 향상 등에서 우수한 것으로 평가되었다.

모멘트 재분배를 고려한 RC 슬래브교의 내하력 평가 (Evaluation of Load Carrying Capacity of RC Slab Bridges Considering Moment Redistribution)

  • 김후승;김대중;염환석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.335-338
    • /
    • 2005
  • This paper describes a proposal for evaluation load carrying capacity of reinforced concrete slab bridges considering the moment redistribution. Recognition of redistribution of moments can be important because it permits a more realistic appraisal of the actual load-carrying capacity of a structure, thus leading to improved economy. In addition, it permits the designer to modify, within limits, the moment diagrams for which members are to be designed. The predicted results shows that moment redistribution are different from estimated by the current KCI, ACI 318-02, EC2 provisions, and propose reasonable load carrying capacity of the reinforced concrete slab bridge.

  • PDF

Carbon FRP Grid로 휨 보강한 철근콘크리트 슬래브의 파괴형태와 설계기준 (Failure Mode and Design Guideline for Reinforced Concrete Slab Strengthened Using Carbon FRP Grid)

  • 박상렬;최현
    • 콘크리트학회논문집
    • /
    • 제16권5호
    • /
    • pp.667-675
    • /
    • 2004
  • 본 논문은 CFRP 격자 보강재로 보강한 콘크리트 슬래브의 파괴형태와 보강설계기준에 대한 연구이다. 실험 연구에서 채택한 시험변수로는 CFRP 격자 보강재의 양, 보강 모르타르의 깊이, 앵커핀의 유무, 압축부 보강 등이다. 연구에 의하면 CFRP 격자 섬유 보강량에 따라 파괴형태가 다르게 나타났는데 낮은 보강수준에서는 FRP 격자의 인장 파단파괴를 보였고 보통의 보강정도에서는 격자층 계면전단파괴가 발생하였다. 높은 보강량을 가진 슬래브에서는 사인장전단파괴 형태를 나타냈다. 보강 효과는 FRP 격자 보강재의 양이 증가할수록 증대하였으나 취성 전단파괴에 의해 연성은 감소되었다. 따라서 FRP 격자 보강량을 제한함으로써 갑자기 하중 지지력을 상실하는 전단파괴를 피할 수 있다. 파괴형태 중 CFRP 파단파괴가 바람직한데 그 이유는 섬유파단 후에도 극한상태에서 보강 전 슬래브의 하중지지력과 연성을 가지고 있기 때문이다. 마지막으로 본 논문은 CFRP 격자섬유보강설계기준과 과정을 제시하고 있다.

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

터널 폼 공법에서 강제양생이 콘크리트강도에 미치는 영향 (Effect of a Heated Curing on Concrete Compressive Strength for Tunnel Form Construction)

  • 이충우;이광수;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.232-236
    • /
    • 1993
  • The Tunnel Form(T/F) system instead of traditional euro form has been tried to reduce construction duration and to improve concrete quality in reinforced concrete wall type apartment construction. To find the relationship for concrete compressive strength between cylinder mold and slab, the different curing locations of concrete cylinder mold in the room have been investigated. The test results showed that the compressive strength of the cylinder concrete with middle-upper location in the room was most near concrete compression strength with respect to slab concrete strength.

  • PDF

지하이동통로가 구비된 다기능 어도의 안정성 검토 (Stability Analysis of Multi-Functional Fishway with Underground Passage)

  • 이영재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권6호
    • /
    • pp.50-59
    • /
    • 2014
  • 본 논문에서는 경북 구미시 봉곡천에 최근 건설된 다기능어도를 대상으로 SAP2000으로 구조 해석하기 위한 변수를 R/C Slab, R/C+S/C Slab 및 지하이동통로 규격(가로${\times}$세로)을 $1m{\times}0.2m$, $1m{\times}0.4m$, $1m{\times}0.6m$와 유속 0.8m/s, 1.2m/s, 1.6m/s으로 구분하여 해석한 결과와 봉곡천 설계식을 비교하여 안정성을 검토하였다. 봉곡천의 설계식 보다 R/C+S/C Slab 타입이 지하이동통로 출구부는 휨모멘트와 최대응력은 각각 28~54%, 26~50%, 측벽은 24~47%, 17~31%, 상부슬래브인 경우도 10~27%, 4~20% 적게 나타났다. 따라서 최대응력과 휨모멘트가 R/C+S/C Slab 타입이 구조 안정성이 확보되는 것으로 나타났기 때문에 지하통로는 휨모멘트와 최대 응력이 27%, 25%, 측벽은 24%, 15% 상부슬래브는 14%, 10%의 보완이 요구되는 것으로 판단된다. 이러한 결과는 지하이동통로 규격이 봉곡천 규격과 동일한 $1m{\times}0.4m$일 때가 $1m{\times}0.2m$, $1m{\times}0.6m$ 보다 안정성이 가장 유리한 것으로 확인되었다. 또한 해석 및 분석 결과를 근거로 다기능어도 시공 시 기본 자료로 활용이 기대된다.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책 (Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P)

  • 정정호;유승엽;이평직;전진용;조아형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF